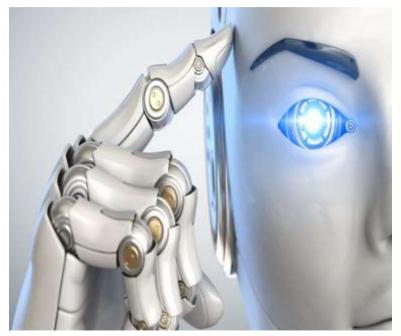


ROBOTICS (17130705)

Unit-I Automation and Robotics IV B.Tech. (Mechanical Engg.) I Sem.



Presented By:
Dr T Jayananda Kumar
Professor
Mechanical Engineering
GIET(A), Rajahmundry.

Course Outline ...

- Why should Robotics be studied?
- What is Automation?
- What is a Robot?
- How the Robot Works?
- Productivity in manufacturing industries Role of Robots

Course Outcomes

After completion of this course, a successful student will be able to:

- CO-1. Identify various robot configuration and components.
 (PO4)
- CO-2. Select appropriate actuators and sensors for a robot based on specific application. (PO6)
- CO-3. Solve kinematic and dynamic problems for simple serial kinematic chains. (PO7)
- CO-4. Plan trajectory for a manipulator for avoiding obstacles.
 (PO5)

UNIT – I

Syllabus

INTRODUCTION:

Automation and Robotics, CAD/CAM and Robotics — An over view of Robotics — present and future applications — classification by coordinate system and control system. Robot applications in manufacturing

ROBOTICS (17130705) UNIT – I

INTRODUCTION: Automation and Robotics

Automation:

There are several examples of automation one come across daily

- Sewing Machine
- Packaging Machines
- Copying Lathe Machines etc.,

https://www.youtube.com/watch?v=jB8pKR2Nnb4

Generally equipped to perform in a specific way or to execute specific tasks

When stitch lengths or product size change

special purpose machines

 some parts of the machine are to be manually changed to accommodate the new size

Machines essentially designed to produce / package millions of products of a specific size, shape

cost of such a machine is distributed over large sales volumes.

Recently there is a huge demand for variety

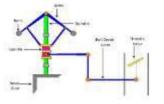
Change in dimensions leads to

- Stoppage of the machine
- Readjust and/or Replace and/or reset some of the links or components to handle the new product
- Time consuming but also requires skill

Automation is the only solution to meet the ever changing demand

Automation defined:

International Society of Automation defines automation as "the creation and application of technology to monitor and control the production and delivery of products and services."


- Autonomous Machine
- Mechanical Automation Many Constraints

Examples of Mechanical Automation

A Governor

 An automaton writing a letter in Swiss Museum CIMA.

 The Antikythera mechanism from 150–100 BC was designed to calculate the positions of astronomical objects

A <u>cuckoo clock</u>

 Tea-serving Japanese automaton, "<u>karakuri</u> ningyō"

 One of the most advanced automata proposed to date is NASA's <u>Automaton Rover for</u> Extreme Environments (AREE)

Robotics:

INSTITUTIONS ANDHRA PRADESH, INDIA

An important part of the automation

A Brief History of Robotics

- The clepsydra water clock introduced by the Babylonians (1400 BC) First automated mechanical artefacts'.
- A fantasy world Inspiration to convert fantasy into reality.
- Cinematic creativity
- Scientific ingenuity
- Entrepreneurial vision

6/26/2020

1921: The term "robota" was used the first time by the Czech writer Karel Capekin in his play "Rossum's Universal Robot".

1941: The science fiction writer Isaac Asimov (1920–1992) first used the word "robotics" to describe the technology of robots. He proposed also the "Laws of Robotics"

The definition of a robot is controversial, even among roboticists.

- The International Organization for Standardization defines a robot as "an automatically controlled, reprogrammable, multipurpose manipulator with three or more axes."
- The Robot Institute of America designates a robot as "a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks."
- Merriam- Webster, stating that a robot is "a machine that looks like a human being and performs various complex acts (as walking or talking) of a human being."

Video-References

- VIDEO 1.1.2 Robots A 50 year journey
- available from http://handbookofrobotics.org/view-chapter/01/videodetails/805
- VIDEO 1.1.3 Robots The journey continues
- available from http://handbookofrobotics.org/view-chapter/01/videodetails/812

6/26/2020

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York

Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003

https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGross MRI Bank Company for Link Ji, Loss, Jan Potento, Andrikal Rayne, Marting Johannes, Contan Barriel, Marc. Barriel, Ala Bills France, Free St. Park, Suppose Spilon, Science, Contant, Spilon, St. Standard, Spilon, Science,

Introduction to Robotics

- 2.12 Lecture Notes

H. Harry Asada oni Professor of Mechanical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

Thomas R. Kurtess Ph.D., PE.

In this lecture you have been briefly introduced to:

- Automation
- Robots

Congratulations, you have finished Lecture 1

Review Questions

State any five examples of mechanical automation.

Who among the following first coined the word Robot:

(a) A scientist (b) A Fiction Writer (c) An Industrial Engineer

Who proposed Laws of robots.

State Laws of robots.

Design a procedure to implement automation Robot garden for any one existing ne manufacturing unit of your choice

ROBOTICS (17130705)

Unit-I CAD/CAM and Robotics IV B.Tech. (Mechanical Engg.) I Sem.

Presented By:
Dr T Jayananda Kumar
Professor
Mechanical Engineering
GIET(A), Rajahmundry.

UNIT – I

Syllabus

INTRODUCTION:

Automation and Robotics, <u>CAD/CAM</u> and <u>Robotics</u> — An over view of Robotics — present and future applications — classification by coordinate system and control system. Robot applications in manufacturing

ROBOTICS (17130705) UNIT – I INTRODUCTION: CAD/CAM and Robotics

Industrial Production 1950 - 1960

Started questioning ...

- How to improve the working conditions of the work forces in production?
- How to release human workers from hard and unhealthy work like welding, riveting, or die-casting?
- How to reduce dangerous work by introduction of appropriate machinery?

Mechanization and Automation found to be the only solution

First industrial robots (1950-1979)

 The first industrial robot, called *UNIMATE*, was created by George Devol and Joseph Engelberger in the 1950s

 In 1956 the first robot company UNIMATION produced and marketed Unimate robots

George Devol

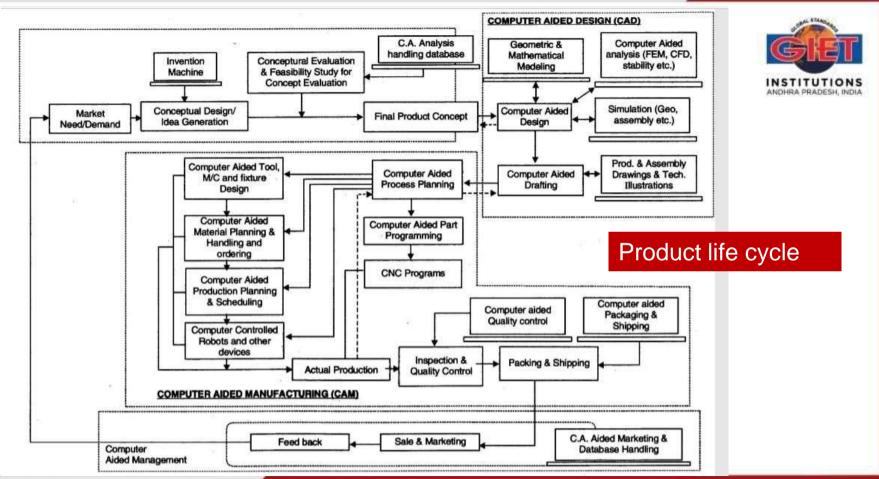
• First **UNIMATE' robots** (hydraulic actuators) were installed at General Motors in **1961**.

 In 1969 Victor Scheinman invented an all electric 6-axis robot arm at Stanford University and named

"Stanford Arm". Birth to the class of articulated robots.

- In 1966 FORD and CHRYSLER were introducing UNIMATEs into their plants
- Welding, spray painting and other jobs
- Being dangerous, difficult, unhealthy, and very repetitive for the human workers .. The age of **Industrial Automation** started!!

Need for CAD/CAM

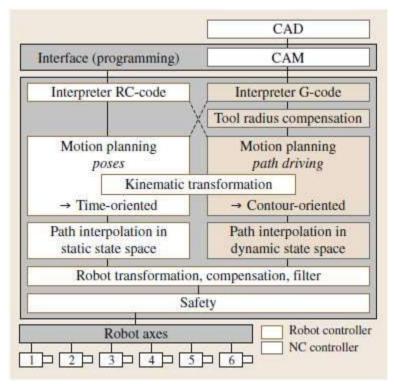

- Design and manufacturing forms the core of engineering
- To remain competitive in global economy
- New products with enhanced features at competitive costs
- Mass customization
- High flexibility in the manufacturing system
- Reduction in manufacturing cost and delivery time
- Reduction in product life cycle

Computer Aided Manufacturing

Types of manufacturing

- 1. Continuous process industries Sugar industry, chemical industry etc.
- 2. Mass production industries Automobiles, Consumer goods etc.
- 3. Batch production industries machines, aircrafts etc.
- 4. Job production industries Prototypes, heat exchangers, chemical reactors etc.
 - Automation is focused on reducing unit production time
 - In plant material handling

Characteristics of computerized numerical control (CNC) and robot controller (RC)



Category	CNC	RC	Interpretation
Targeted application	Machining, material removal	Handling, assembly	A CNC machine tool is single pur- pose; generally robots are universal machines
Motions	Path-based, complex contour- oriented	Point- or path-based and mo- tion time-oriented	Extended look-ahead of CNC controllers allows detailed path description and adaption on $\gg 100$ via points (< 10 via points in most robot controllers)
Programming	On-site programming based on standardized program- ming language (G-code), ISO (International Organization for Standardization) 6983, use of computer aided manu- facturing (CAM) tools	On-site teaching (teach pendant, editor) based on supplier specific languages, use of typical robot simula- tion environments	Whereas robots are traditionally programmed manually on site, CNC controllers use CAM technology to generate complex paths automatically based on CAD data
Command reading	Online interpreter, continu- ous loading of instruction	Initial loading of programs, which are usually interpreted, sometimes compiled)	Program size in robot controllers limited by memory, CNC interprets programs online, may execute an un- limited number of commands

6/26/2020

Structure of an NC-kernel integrated into a robot controller (courtesy of ISG Stuttgart)

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York

Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003

https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGross MRI Bank Company for Link Ji, Loss, Jan Potento, Andrikal Rayne, Marting Johannes, Contan Barriel, Marc. Barriel, Ala Bills France, Free St. Park, Suppose Spilon, Science, Contant, Spilon, St. Standard, Spilon, Science,

Introduction to Robotics

- 2.12 Lecture Notes

H. Harry Asada oni Professor of Medianical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

Thomas R. Kurfess Ph.D. PE

In this lecture you have been briefly introduced to:

- CAD/CAM
- Robots
- Integration of the above Congratulations, you have finished Lecture 2

Review Questions

Who created first industrial robot.

Name the first industrial robot.

Name the robot with all electric actuators.

Which industry has implemented industrial robots.

List any five robot manufacturing establishments.

What is the role of robots in manufacturing.

ROBOTICS (17130705)

Unit-I An over view of Robotics – Present and future applications

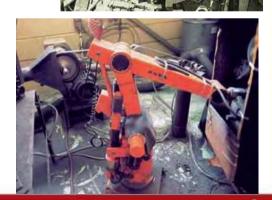
IV B.Tech. (Mechanical Engg.) I Sem.

Presented By:
Dr T Jayananda Kumar
Professor
Mechanical Engineering
GIET(A), Rajahmundry.

UNIT – I

Syllabus

INTRODUCTION:


Automation and Robotics, CAD/CAM and Robotics – <u>An over view of Robotics – present and future applications</u> – classification by coordinate system and control system. Robot applications in manufacturing

• 1971: First Unimation robots installed by KUKA for welding in a production line at Daimler-Benz AG, Stuttgart

• 1973: KUKA entered into robotic business with their own FAMULUS robot

- 1974: First computer-controlled ASEA Robot IRb6 for polishing of steel tubes.
- KAWASAKI started with Unitmate robots on the Japanese market.
- 1975: First ASEA IRb 6 in welding automation
- 1977: First ASEA robots in France and Italy (FIAT). The Japanese company YASKAWA introduced the first MOTOMAN robot on the market.

6/26/2020

- 1977: UNIMATION started to market the famous PUMA robot (programmable universal machine for assembly)
- 1979: First ASEA robots for spot welding (IRb 60)
- 1977: First ASEA robots in France and Italy (FIAT).
- The Japanese company YASKAWA introduced the first MOTOMAN robot on the market.
- 1977: UNIMATION started to market the famous PUMA robot (programmable universal machine for assembly)
- 1979: First ASEA robots for spot welding (IRb 60)

Germany

Italy

Japan

Japan

Japan

anasonic Robotics Japan

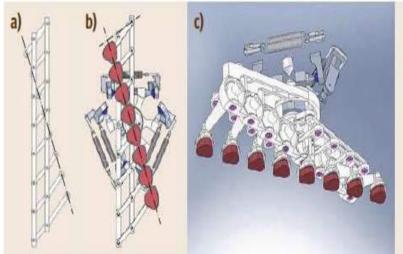
USA

Robotics

Kawasaki

Austria

Swiss

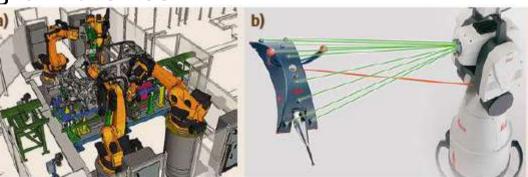

Major Industrial Robot Manufacturers

Out of the many possible uses of industrial robots, high-potential robot applications will be briefly described.

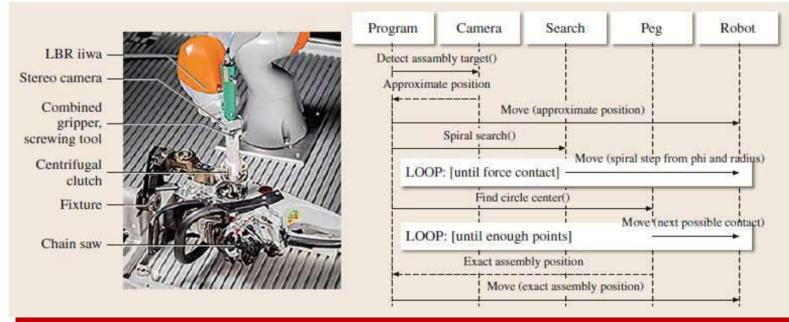
Handling: grasping, transporting, packaging, palletizing, and picking.

In food automation, untouched by human hand entails critical requirements for robot automation such as the need for hygienic design, operational speed, ease of

programming, and cost.

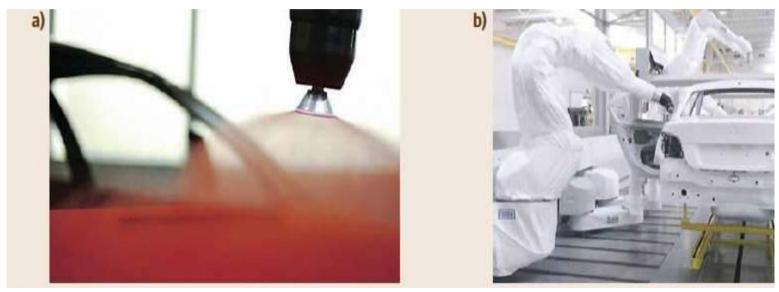

Bin-Picking repeatable manner grasping partly or randomly ordered parts

Welding


Typical robot-based welding processes are spot welding, particularly in car body assembly, and gas-shielded metal arc welding (GMAW)

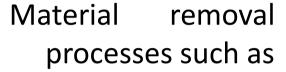
 increasing compactness of laser sources and robot motion accuracy laser welding is in the rise

Assembly


Set up and implementation of a centrifugal clutch assembly for a chain saw

6/26/2020

Painting


Hazardous working conditions for human operators

High-speed rotating atomizer and a multirobot workcell for car body painting

Processing

- grinding,
- deburring,
- milling, and
- drilling

Space Robotics

- Space Shuttle Remote Manipulator System
- Teleoperated Rovers

http://handbookofrobotics.org/view-chapter/55/videodetails/330

Autonomous Rovers

Rocky 4

The Pathfinder rover, Sojourner: Returned 2.3 billion bits of information, including more than 16,500 images and 15 chemical analyses of rocks and soil

https://www.nasa.gov/mission_pages/mars-pathfinder

Space Robotics Contd..

The Mars exploration rovers, Spirit and Opportunity, with a manipulator arm in front

Robotics in Agriculture and Forestry

Ex. Precision seeding system for broad acre farming

http://handbookofrobotics.org/view-chapter/56/videodetails/131 http://handbookofrobotics.org/view-chapter/56/videodetails/91 **Robotics in Construction**

Robotics in Hazardous Applications

Robotics in Mining

Disaster Robotics

Robot Surveillance and Security

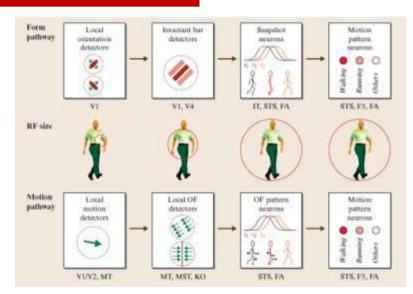
Intelligent Vehicles

Medical Robotics and Computer-Integrated Surgery

Rehabilitation and Health Care Robotics

Domestic Robotics

Robotics Competitions and Challenges



Present and future applications cont..

Robots and Humans – New upcoming vertical

Humanoids
Human Motion Reconstruction
Physical Human–Robot Interaction
Learning from Humans
Neurorobotics: From Vision to Action

http://handbookofrobotics.org/view-chapter/78/videodetails/569

New generation of robots may co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance.

6/26/2020

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York

Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003

https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGross MRI Bank Company for Link Ji, Loss, Jan Potento, Andrikal Rayne, Marting Johannes, Contan Barriel, Marc. Barriel, Ala Bills France, Free St. Park, Suppose Spilon, Science, Contant, Spilon, St. Standard, Spilon, Science,

Introduction to Robotics

- 2.12 Lecture Notes

H. Harry Asada oni Professor of Mechanical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

Thomas R. Kurfess Ph.D., PE.

In this lecture you have been briefly introduced to:

- Developmental milestones of robots
- Present and future applications of robots
 Congratulations, you have finished Lecture 3

Review Questions

First Unimation robots installed by KUKA for ______ process in a production line at Daimler-Benz AG, Stuttgart.

In which year KUKA entered into robotic business with their own FAMULUS robot.

List any five robot applications in space science.

Explain the scope of robots in agriculture.

ROBOTICS (17130705)

Lecture Details: Topic Name Subject/Branch, Semester etc. **Presented By:** Name of the Faculty

Designation Department College

ROBOTICS (17130705)

Unit-I Classification by coordinate system and control system

IV B.Tech. (Mechanical Engg.) I Sem.

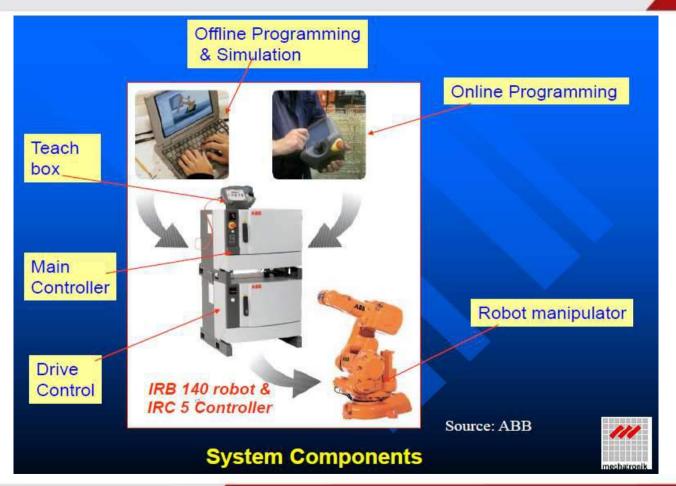
Presented By:
Dr T Jayananda Kumar
Professor
Mechanical Engineering
GIET(A), Rajahmundry.


UNIT - I

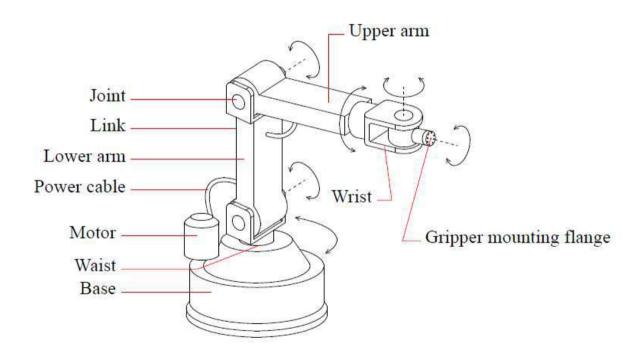
Syllabus

INTRODUCTION:

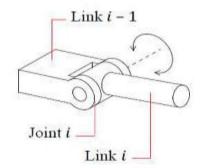
Automation and Robotics, CAD/CAM and Robotics – An over view of Robotics – present and future applications – Classification by coordinate system and control system - Robot applications in manufacturing


By the definition of a robot:
 It is a machine which can perform a given task automatically using artificial intelligent and without human intervention.

Robot is made up of:

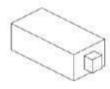

- Machine With Links and Joints
- Actuator (Motors) Attached At Each Joints
- The End-Effector
- Sensors Viz., Position Sensor Velocity Sensor or the Vision Sensor, Cameras Etc.,
- Controller Which Uses a Computer

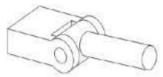
Robotic Arm

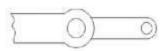

Types of Joints

Joints are of two types (movement)

- 1. Linear joint links move in 2. Rotary joint links move in linear fashion with respect to its joint when actuated
 - Link i-1Joint i Link i


rotary fashion with respect to its joint when actuated




Linear Joint

Moving Link executes linear motion about its joint axis.

P: Prismatic

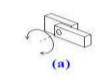
Moving link executes rotary motion about its joint axis

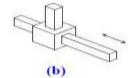
R: Revolute

Degrees of Freedom

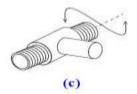
• Degrees of freedom (DOF) is defined as the ability of a joint to produce linear or rotary movement when actuated.

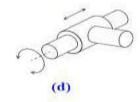
 Number of DOF for a robot is equal to the number of joint axes in the robotic arm.

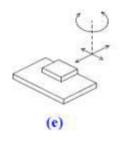

Lower Pair Joints

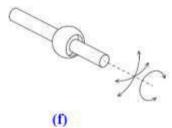


A lower pair joint is the joint in which two contacting surfaces can slide over with one another in rotary or linear manner.


They are of six types

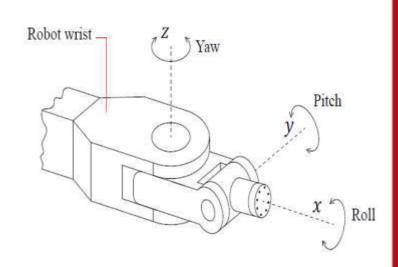

- a) Revolute joint 1 DOF
- b) Prismatic joint 1 DOF
- c) Screw joint 1 DOF
- d) Cylindrical joint 2 DOF
- e) Planar joint 3 DOF
- f) Spherical joint 3 DOF





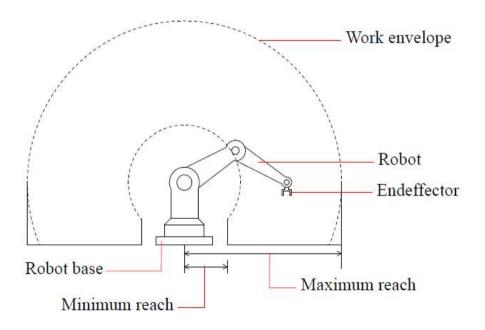
- (a) Revolute joint
- (b) Prismatic joint
- (c) Screw joint
- (d) Cylindrical joint

- (e) Planar joint
- (f) Spherical joint


Wrist Motion

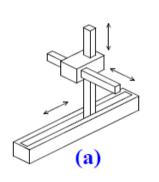
1. Yaw – Rotary motion executed about z axis. Causes movement in left and right directions.

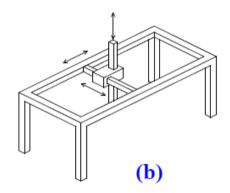
2. Pitch – Rotary motion executed about *y* axis. Causes movement in up and down directions.

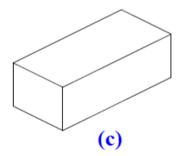

3. Roll – Rotary motion executed about x axis.

Robot's Work Volume

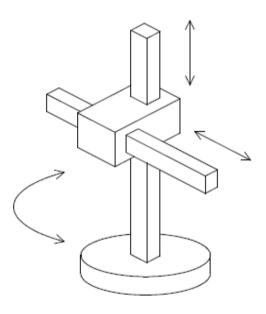
The three dimensional space around the robot

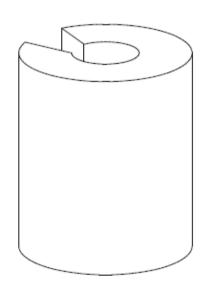

Classification of Manipulator



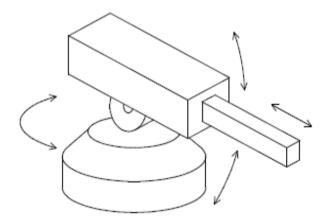

- 1. Cartesian coordinate robot system
- 2. Cylindrical robot system
- 3. Polar robot system
- 4. Pendulum robot system
- 5. Articulated or Jointed arm robot system
- a) Horizontal axis jointed arm
- b) Vertical axis jointed arm
- 6. Multiple joint robot system

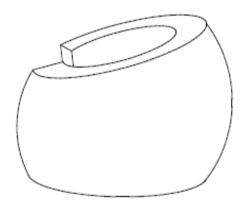
Cartesian Coordinate Robot System



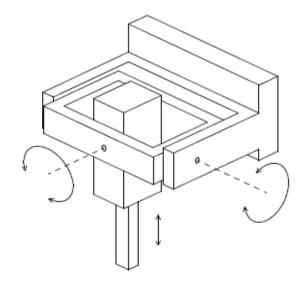

- (a) Cartesian coordinate robot system
- (b) Gantry style (area gantry)
- (c) Rectangular work envelope

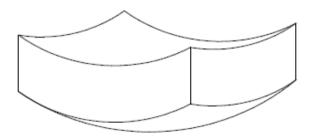
Cylindrical Robot System


(a) Cylindrical robot system

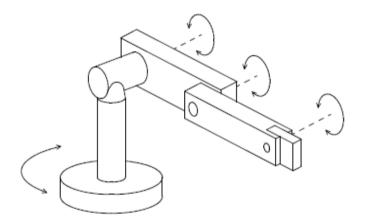

(b) Cylindrical work envelope

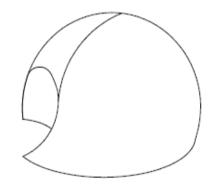
Polar Robot System


(a) Polar robot system


(b) Spherical work envelope

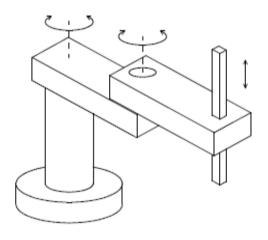
Pendulum Robot System

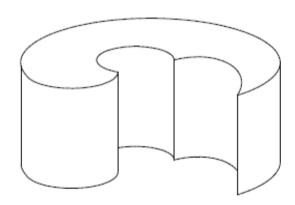




(b) Partially spherical work envelope

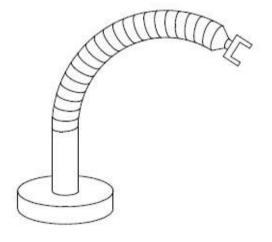
Horizontal Axis Jointed Arm

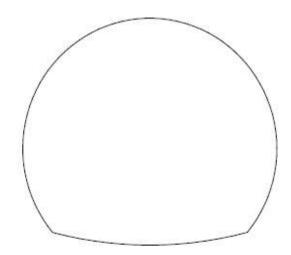



(a) Horizontal axis robot system

(b) Spherical work envelope

Vertical Axis Jointed Arm




(a) Vertical axis robot system

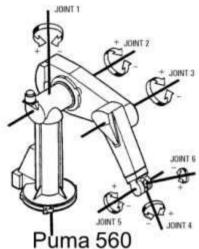
(b) Cylindrical work envelope

Multiple Joint Robot System

(a) Spine robot system

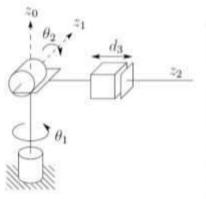
(b) Spherical work envelope

Classification of Robot Manipulators based on types of joints


Arm Geometry (Joints)

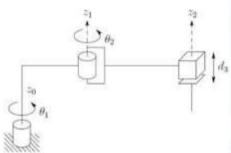
- Serial link robots
 - · Articulated (RRR)
 - · Spherical (RRP)
 - · SCARA (RRP)
 - Cylindrical (RPP)
 - · Cartesian (PPP)
- Parallel robot
 - · Closed chain

Articulated Manipulator (RRR)


 Number of joints determines the number of DOFs.

- · 6 joints = 6 DOFs
 - J1: waist
 - J2: shoulder
 - J3: elbow
 - J4: wrist rotation
 - J5: wrist bend
 - J6: Flange rotation

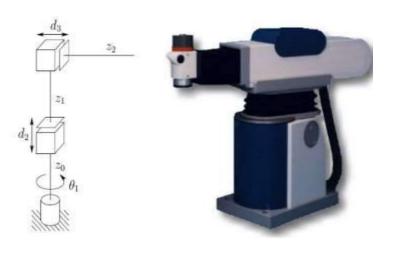
Spherical Manipulator (RRP)



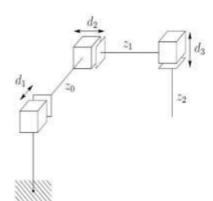
Stanford arm

SCARA (RRP)

 SCARA: Selective Compliant Articulated Robot for Assembly



Epson E2L653S



Cylindrical Manipulator (RPP)

Cartesian Manipulator (PPP)

Epson Cartesian robot

Parallel Manipulators

- Closed chains
- · Prismatic actuators with spherical joints
- 6DOF Stewart platform: 6 linear actuators
- Precise positioning
- · Large payload, small workspace
- Forward kinematics is hard to solve due to constraints and has multiple solutions.

Robot Control

- Actuators
- Transmission systems
- Power supplies
- Sensors and other electronics
- Electronics
- Software

- Actuators are required to move joints, provide power and do work.
- Serial robot actuators low weight –actuators near the base.
- Parallel robots Often actuators are at the base.
- Actuators drive a joint through a transmission device

Three commonly used types of actuators:

- Hydraulic
- Pneumatic
- Electric motors

6/26/2020

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York

Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003

https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGrow ME Bank Company for Livin Jon State of Andread States Andrea Statement Control States States Andread An Stiffe France Free St. Park States Spine State States

Introduction to Robotics

- 2.12 Lecture Notes

H. Harry Asada oni Professor of Mechanical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

Thomas R. Kurfess Ph.D. PE

In this lecture you have been briefly introduced to:

- Robot Structure
- Robot Links and Joints
- Robot Configurations
- Classification of robots

Congratulations, you have finished Lecture 4

Review Questions

Explain DOF in robotics.

Classify robots based on joints.

List various joints.

What is work volume.

In robotics joints connects _____

What is RRR configuration.

ROBOTICS (17130705)

Unit-I Robot applications in manufacturing IV B.Tech. (Mechanical Engg.) I Sem.

Presented By:
Dr T Jayananda Kumar
Professor
Mechanical Engineering
GIET(A), Rajahmundry.

UNIT – I

Syllabus

INTRODUCTION:

Automation and Robotics, CAD/CAM and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and control system. Robot applications in manufacturing

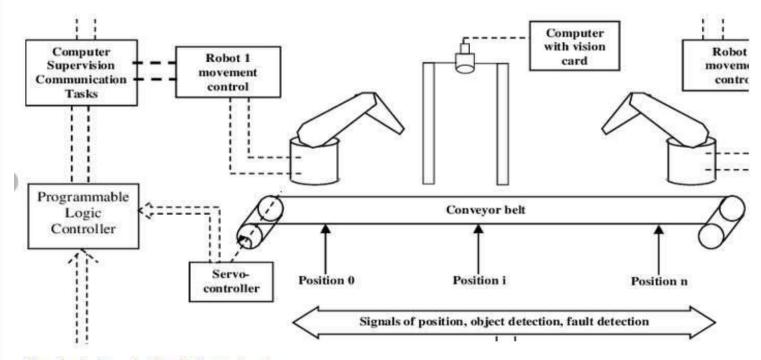
Industrial Robotics: The Main Driver for Robotics Research and Application

- CAD/CAM and CIM
- CNC machines for workerless shifts
- FMS
- Higher flexibility in manufacturing automation

Today's industrial robots are mainly rooted in

- Capital-intensive large-volume manufacturing
- Automotive, electronics, and electrical industries
- In 1973, the company ASEA (now ABB) introduced

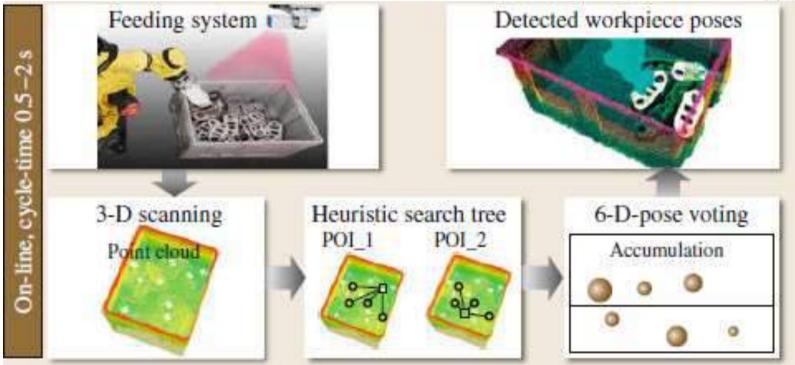
the first microcomputer-controlled all-electric industrial robot


A robot workcell consists of one or more robots with controllers and so-called robot peripherals, e.g., grippers or tools, safety devices, sensors, and Material transfer components for moving

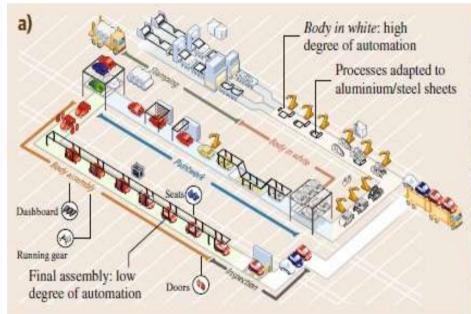
 https://www.nist.gov/video/coordinated-assembly-heterogeneousrobotic-work-cell

6/26/2020

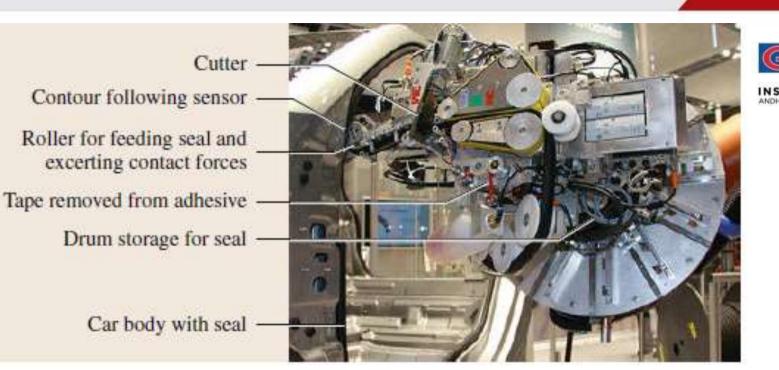
Robot workcell



Classical elements at robotic workcell


Typical working cycle of a Robot workcell

Car production



a. assembly line

b. highly automated robot garden


A robot-guided tool for handling and processing limb material, in this case a self-adhesive seal for car bodies

6/26/2020

CIM and **FMS**

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York

Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003

https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGrow ME Bank Company for Link Ji Line, Joe House, Andried Kapes Moriney Statements Control States States Absord Also Silli-France Free St. Park States Spine State States

Introduction to Robotics

- 2.12 Lecture Notes

H. Harry Asada on Professor of Mechanical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

Thomas R. Kurtess Ph.D., PE

In this lecture you have been briefly introduced to:

- Application of robots
- Integration of CAM and FMS
- CIM

Congratulations, you have finished Lecture 5

Review Questions

State the relation between CAM and Robotics.

What do you understand by CIM.

Explain FMS.

Design a Robot garden for any one manufacturing unit of your choice.

ROBOTICS (17130705)

Unit – II: Components of the Industrial Robots IV B.Tech. (Mechanical Engg.) I Sem.

Presented By: **Dr T Jayananda Kumar**Professor

Mechanical Engineering

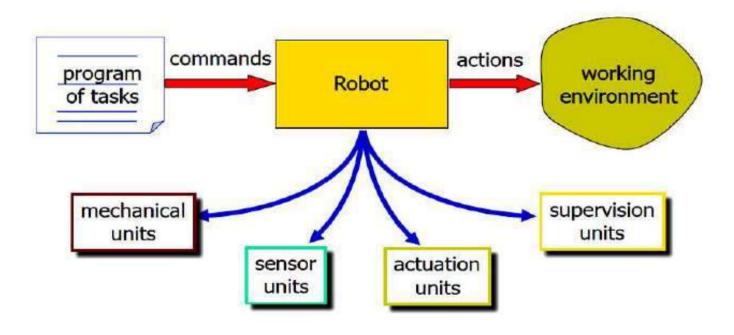

GIET(A), Rajahmundry.

UNIT - II

Syllabus

COMPONENTS OF THE INDUSTRIAL ROBOTICS: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom — Requirements and challenges of end effectors, determination of the end effectors, comparison of Electric, Hydraulic and Pneumatic types of locomotion devices.

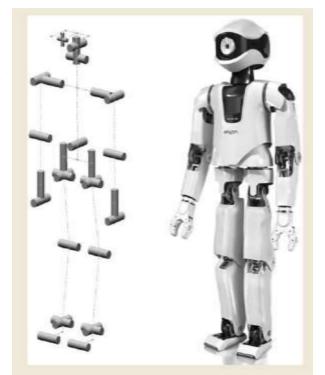
Course Outcomes



After completion of this course, a successful student will be able to:

- CO-1. Identify various robot configuration and components.
 (PO4)
- CO-2. Select appropriate actuators and sensors for a robot based on specific application. (PO6)
- CO-3. Solve kinematic and dynamic problems for simple serial kinematic chains. (PO7)
- CO-4. Plan trajectory for a manipulator for avoiding obstacles.
 (PO5)

ROBOT AS A SYSTEM:



Functional Units of a Robot:

- Mechanical Structure
- Sensor Units
- Actuator Units
- Supervision Units

Mechanical structure or mechanism of the robot:

The physical structure that create its movable skeleton of the robot


- Beams,
- Links,
- Castings,
- Shafts,
- Slides,
- and Bearings

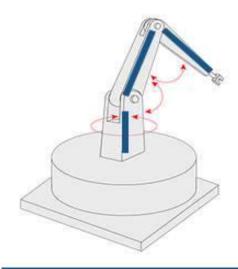
https://www.fanuc.eu/es/en/robots/robot-filter-page/m-2000-series/m-2000ia-2300

Sensors used in Robots

- Light Sensor
- Sound Sensor
- Proximity Sensor
- Tactile Sensors
- Temperature Sensor
- Navigation and Positioning Sensors
- Acceleration Sensor

Desirable characters of Robot control

- Save floor space
- User-friendly control
- Maximum energy savings
- Out-of-the-box Intelligence
- Easy set-up
- Safer Software to control



Common types of arms


1 Serial link

Serial joint linkage

— Link

2 Parallel link

Parallel joint linkage

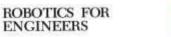
https://vimeo.com/122758385

- Robot design focuses on the number of joints
- Physical size
- Payload capacity
- The movement requirements of the endeffector
- Robot ARMs discussed in UNIT I

- The configuration of the movable skeleton and the overall size of the robot are determined by
- Task requirements for reach
- Workspace and reorientation ability

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York


Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003

https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

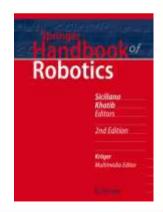
https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGraw HEE Break Company
for Let 21 June 3 In Property Modelly Supra Mariney
for the 21 June 3 In Property Modelly Supra Mariney
formers of the State Suprace States States States
from 5 For 50 Fact Suprace States States States

Introduction to Robotics

2.12 Lecture Notes


H. Harry Asada oni Professor of Mechanical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

Thomas R. Kurfess Ph.D., PE

In this lecture you have been briefly introduced to:

Function line diagram representation of robot arms Common types of arms

Congratulations, you have finished Lecture 1 of Unit-II

Review Questions

List functional units of a Robot.

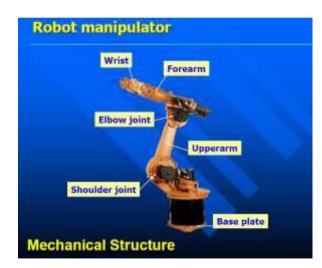
Describe various sensors used in Robots.

Design a Robot control unit.

ROBOTICS (17130705)

Unit — II: Components, Architecture, number of degrees of freedom

IV B.Tech. (Mechanical Engg.) I Sem.

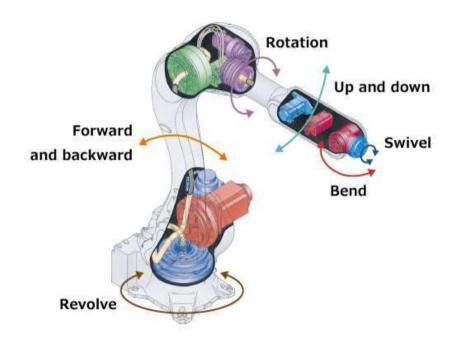

Presented By:
Dr T Jayananda Kumar
Professor
Mechanical Engineering
GIET(A), Rajahmundry.

UNIT - II

Syllabus

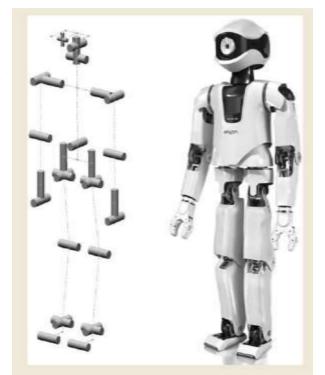
COMPONENTS OF THE INDUSTRIAL ROBOTICS: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom — Requirements and challenges of end effectors, determination of the end effectors, comparison of Electric, Hydraulic and Pneumatic types of locomotion devices.

Course Outcomes


After completion of this course, a successful student will be able to:

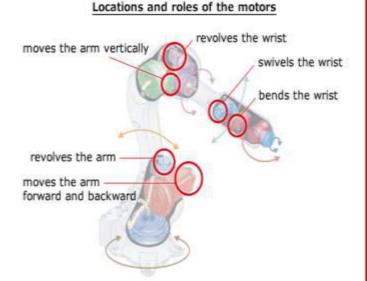
- CO-1. Identify various robot configuration and components.
 (PO4)
- CO-2. Select appropriate actuators and sensors for a robot based on specific application. (PO6)
- CO-3. Solve kinematic and dynamic problems for simple serial kinematic chains. (PO7)
- CO-4. Plan trajectory for a manipulator for avoiding obstacles.
 (PO5)

A robot joint mechanism consists of at least four major components :

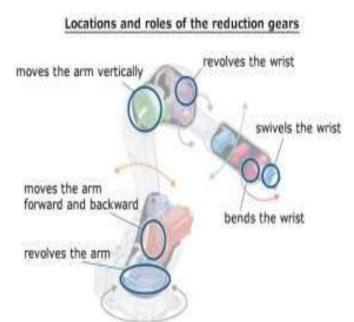

The joint axis structure, An actuator, Transmission, and state sensor

Functional Units of a Robot:

- Mechanical Structure
- Sensor Units
- Actuator Units
- Supervision Units

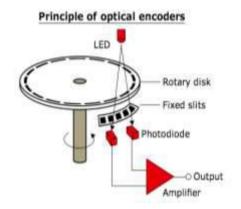


 The actuator is a component that functions as the joint of the robot


 Allows a robot to move the arm up and down or rotate, and it converts energy into mechanical motions.

A reduction gear

- A reduction gear is a device for increasing the power of a motor.
- If you combine gear wheels with the different number of gears and reduce the motor's rotation by a factor of 10, the power of the motor will be multiplied by 10.
- This is the same principle as a bicycle transmission.



Encoder

- An encoder is a device that indicates the position (angle) of a motor's rotational shaft.
- Having an encoder, it can provide tangible data about in what direction and how much the robot moves.
- General optical encoders have a disk attached to the rotating shaft of the motor. The disk has slits at regular intervals to let light passes and on both sides of the disk are light-emitting-diode (LED) and light receiving elements (photodiodes) to discriminate the light intensity (light and dark).

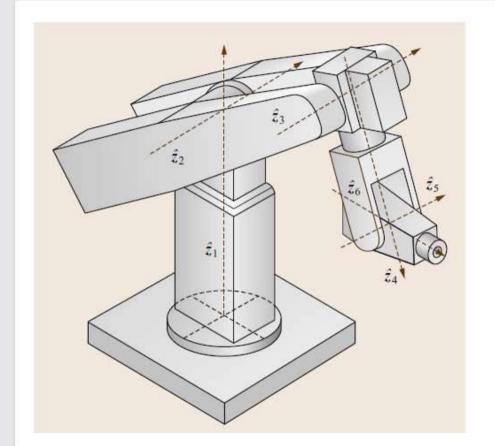
Transmission

- The transmission is a component that transmits the power generated by the actuators and reduction gears.
- The transmission is also capable of changing the direction and magnitude of power.
- A motor used in robots is usually placed near the joints, but it can also be placed away from the joints by using transmission mechanisms such as belts and gears.

 Since the motor can be installed on the elbow part of the arm by the conduction mechanism, a compact wrist is feasible.

https://www.fanuc.eu/es/en/robots/robot-filter-page/m-2000-series/m-2000ia-2300

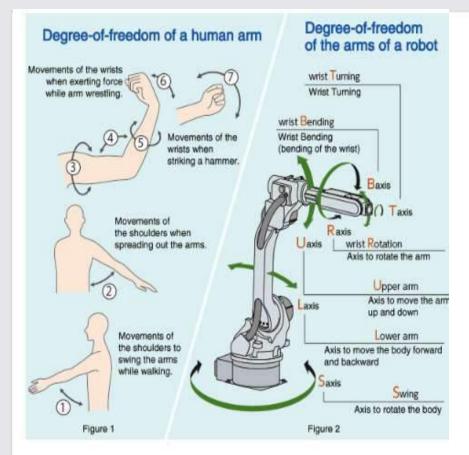
https://www.youtube.com/watch?time_continue=65&v=r9ZmGgiB taU&feature=emb_logo



Degrees of Freedom:

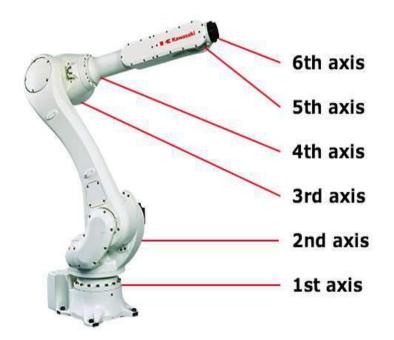
INSTITUTIONS ANDHRA PRADESH, INDIA

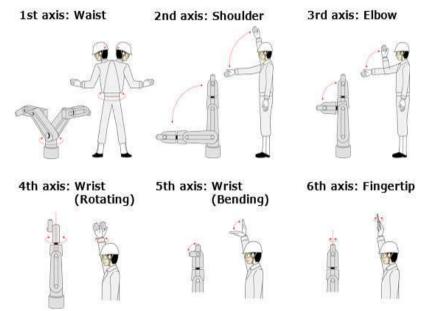
The minimum number of coordinates required to prescribe the motion is called the number of degrees of freedom.


- Degree of freedom is the number of variables which is required to identify the parts of a robot manipulator
- A rigid body will have 6 degrees of freedom: 3 position variables and 3 rotation variables
- An object moving in a plane has 3 degrees of freedom: two position variables and one rotation variables
- More than 6 degrees of freedom for a robot manipulator is called a redundant robot manipulator
- We can perform or reach a particular object in an infinite way.

Six-degree-of-freedom serial chain manipulator composed of an articulated arm with a spherical wrist

7/7/2020


Let's begin taking count starting at the shoulders (Figure 1).



- 1) Degree-of-freedom at the front and back of the shoulders
 - 2) Degree-of-freedom for moving the shoulders left and right
 - 3) Degree-of-freedom for twisting the upper arms
 - 4) Degree-of-freedom for bending and stretching at the elbows
 - 5) Degree-of-freedom for twisting the forearm
 - 6) Degree-of-freedom for bending at the wrists toward the palm of the hand
 - 7) Degree-of-freedom for moving the wrists sideways And that's a total of seven points to check for degrees of freedom.
- How many degrees of freedom a human hand have.

Are the structures of robots and humans the same?

https://www.youtube.com/watch?time_continue=46&v=Gu74rGY426g&feature=emb_logo

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York

Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003

https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGraw Hill Break Company
Ton Lie Ji Lean Jan François destinati Regita Mariney
Tonominey James Mariney Marine Medical Regita Mariney
Tonomin From 3th Park Suppose Spiling States States

Introduction to Robotics

2.12 Lecture Notes

H. Harry Asada oni Professor of Mechanical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

Thomas R. Kurtess Ph.D., PE

In this lecture you have been briefly introduced to:

Components, Architecture, Number of degrees of freedom

Congratulations, you have finished Lecture 2 of Unit-II

Review Questions

List four major components of a Robot.

Describe reduction gears used in Robots.

Explain the function of an Encoder.

How many degrees of freedom a human hand have?

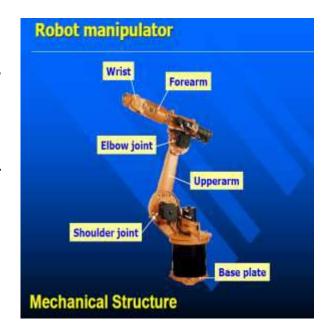
Design a Robot control unit with 7 DoF.

Explain it's advantages, if any.

ROBOTICS (17130705)

Unit – II: Requirements and challenges of end effectors

IV B.Tech. (Mechanical Engg.) I Sem.


Presented By:
Dr T Jayananda Kumar
Professor
Mechanical Engineering
GIET(A), Rajahmundry.

UNIT - II

Syllabus

COMPONENTS OF THE INDUSTRIAL ROBOTICS: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom – Requirements and challenges of end effectors, determination of the end effectors, comparison of Electric, Hydraulic and Pneumatic types of locomotion devices.

Course Outcomes

After completion of this course, a successful student will be able to:

- CO-1. Identify various robot configuration and components.
 (PO4)
- CO-2. Select appropriate actuators and sensors for a robot based on specific application. (PO6)
- CO-3. Solve kinematic and dynamic problems for simple serial kinematic chains. (PO7)
- CO-4. Plan trajectory for a manipulator for avoiding obstacles.
 (PO5)

In robotics, an **end effector is the** device at the **end** of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot

It is mounted on the wrist, enables the robot to perform specified tasks.

End-effectors are categorised into two major types:

- 1. Grippers
- 2. Tools

Types of end effectors

- Grippers. Grippers are the most common type of end effector
- Force-Torque Sensors. Force-torque sensors (FT sensors) are pucks installed between the robot flange and the tool that interacts with the part
- Material Removal Tools
- Welding Torches
- Collision Sensors
- Tool Changers.

In order to select the right end effector, different aspects should be considered such as:

- Stroke.
- Grip force.
- Speed.
- Form factor.
- Weight.
- Material.
- Repeatability.
- Sensing.

A gripper is a device which enables the holding of an object to be manipulated.

Selecting the best gripper for your automation project will be much easier once you learn about the most common gripper types available.

- Parallel Motion Two-Jaw Gripper
- Three-Jaw Gripper
- Bellows Gripper
- Collet and Expanding Mandrel Grippers
- O-Ring Grippers
- Needle Grippers
- Multi-Finger and Adaptive Grippers

END EFFECTORS – GRIPPERS

Туре	Comment	
Mechanical gripper	Two or more fingers that can be actuated by robot controller to open and close on a work part.	# (A)
Vacuum gripper	Suction cups are used to hold flat objects. https://www.youtube.com/watch?time_continue=67&r=vKD20BTkXhk&feature=emb_logo	
Magnetised devices	Making use of the principles of magnetism, these are used for holding ferrous work parts.	

END EFFECTORS – GRIPPERS

Туре	Comment
Adhesive devices	Deploying adhesive substances these hold flexible materials, such as fabric
Simple mechanical devices	For example, hooks and scoops.
Dual grippers	Mechanical gripper with two gripping devices in one end effector for machine loading and unloading. Reduces cycle time per part by gripping two work parts at the same time.
Interchangeable fingers	Mechanical gripper whereby, to accommodate different work part sizes, different fingers may be attached.

END EFFECTORS – GRIPPERS

Туре	Comment	INSTITUTIO ANDHRA PRADESH,
Sensory feedback fingers	Mechanical gripper with sensory feedback capabilities in the fingers to aid locating the work part and to determine correct grip force to apply (for fragile work parts).	
Multiple fingered grippers	Mechanical gripper with the general anatomy of the human hand. https://www.youtube.com/watch?time_continue=2&v=21DtmkUSAnU&feature=emb_logo	

An industrial robot is used to lift an 80 Kg load vertically using a constraint gripper. The gripper weighs 20 Kg. If it moves with an acceleration of g/2, what minimum payload must be specified for the robot?

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York

Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003 https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGross MRI Bank Company for Link Ji, Loss, Jan Potento, Andrikal Rayne, Mariney Johannes Commission Water, Revised Alexander France, Free St. Park, Stages, Sales, Solar Stoney

Introduction to Robotics

2.12 Lecture Notes

H. Harry Asada oni Professor of Mechanical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

EDITED BY
Thomas R. Kurfess Ph.D., PE.

In this lecture you have been briefly introduced to:

- 1. End effectors
- 2. Types and Design parameters

Congratulations, you have finished Lecture 3 of Unit-II

Review Questions

List functional aspects of End effectors.

Describe various types of end effectors.

An industrial robot is used to lift an 80 Kg load vertically using a constraint gripper. The gripper weighs 20 Kg. If it moves with an acceleration of g/2, what minimum payload must be specified for the robot?

ROBOTICS (17130705)

Unit – II: Actuators used in robots IV B.Tech. (Mechanical Engg.) I Sem.

Presented By: **Dr T Jayananda Kumar**Professor

Mechanical Engineering

GIET(A), Rajahmundry.

UNIT - II

Syllabus

COMPONENTS OF THE INDUSTRIAL ROBOTICS: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom — Requirements and challenges of end effectors, determination of the end effectors, comparison of Electric, Hydraulic and Pneumatic types of locomotion devices.

Course Outcomes

After completion of this course, a successful student will be able to:

- CO-1. Identify various robot configuration and components.
 (PO4)
- CO-2. Select appropriate actuators and sensors for a robot based on specific application. (PO6)
- CO-3. Solve kinematic and dynamic problems for simple serial kinematic chains. (PO7)
- CO-4. Plan trajectory for a manipulator for avoiding obstacles.
 (PO5)

Actuators are used in order to produce locomotion in robots.

Actuators supply the motive power for robots.

Actuators are the muscles of robots. There are many types of actuators available depending on the load involved.

The term load is associated with many factors including force, torque, and speed of operation, accuracy, precision and power consumption.

7/7/2020

- 1. Direct Drive Motor
- 2. Hydraulic Actuators
- 3. Pneumatic Actuators
- 4. Magnetostrictive Actuators
- 5. Shape Memory Metal Actuators

Desirable characteristics of Actuators:

Weight

 Stepper motors are generally heavier than servomotors for the same power.

Power-to-weight Ratio

- The high the voltage of electric motors, the better power-to weight ratio.
- Pneumatic systems deliver the lowest power-to-weight ratio.
- Hydraulic systems have the highest power-to-weight ratio.

Actuators

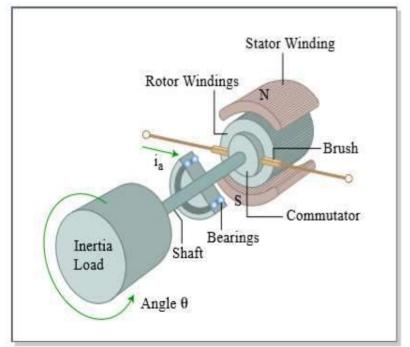
- Stepper motors have capability of achieving precision angular rotation in both directions and are commonly employed to accommodate digital control technology.
- Hydraulic and pneumatic actuators are under fluid power actuators. Fluid
 power refers to energy that is transmitted via a fluid under pressure. When
 a pressure is applied to a confined chamber containing a piston, the piston
 will exert a force causing a motion.
- Materials which undergo some sort of transformations through physical interaction are referred to as active materials. Piezoelectric (voltage-load), shape-memory alloys (react to heat), magnetostrictive are examples of these materials.

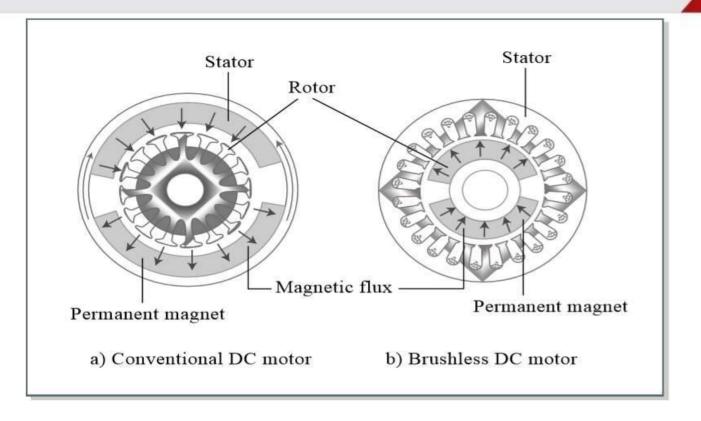
Electric Servomotors

- Most robot manipulators use servomotors as a power source.
- Servomotors are designed to accurately follow the desired position, velocity and torque which change frequently.
- They have structures similar to ordinary electric motors, but with low inertia and large torque capably for high accelerations.
- Typical servomotors used for robotic applications are permanent magnet (PM) DC motors and brushless DC (BLDC) motors.

Working ...

The stator consists of permanent magnets, creating amountained magnetic field in the air gap between the rotor and the stator.


The rotor has several windings arranged symmetrically around the motor shaft.


An electric current applied to the motor is delivered to individual windings through the brush-commutation mechanism, as shown in the figure.

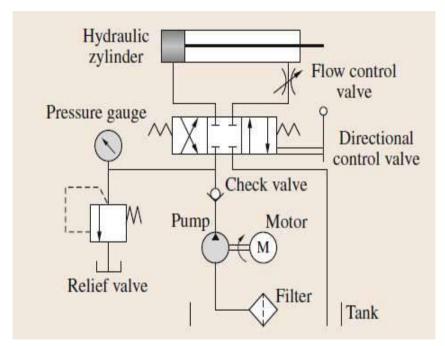
As the rotor rotates the polarity of the current flowing to the individual windings is altered. This allows the rotor to rotate continually.

- The DC motor converts electrical energy into rotational or linear mechanical energy.
- The lowest-cost PM motors use ceramic (ferrite) magnets and robot toys and hobby robots often use this type of motor.
- Brushless motors, also called AC servomotors or brushless DC motors, are widely used in industrial robots
- Brushless motors eliminate the friction, sparking, and wear of commutating parts.
- Brushless motors generally have good performance at low cost because of the decreased complexity of the motor.
- The controllers for these motors are more complex and expensive than brush-type motor.

Construction of brushless DC motor and conventional DC motor

Stepper Motors

- Small, simple robots, such as bench top adhesive dispensing robots, frequently use stepper or pulse motors of the permanent magnet (PM) hybrid type.
- They are relatively low in cost and interface easily to electronic drive circuits. Microstep control can produce 10 000 or more discrete robot joint positions.
- Power-to-weight ratios are lower for stepper motors than for other types of electric motors.


https://www.youtube.com/watch?v=vKD20BTkXhk&feature=emb_logo

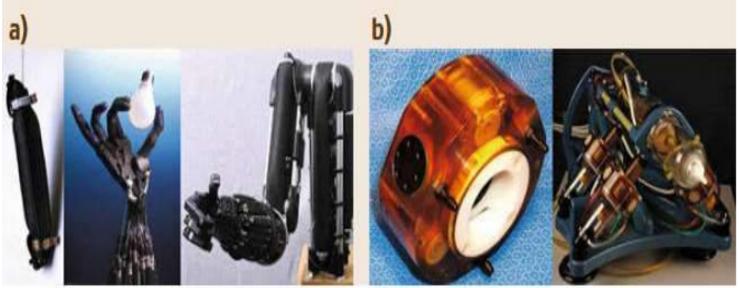
Hydraulic Actuators

Hydraulic actuators, chosen as power sources for the earliest industrial robots, offer very large force capability and high power-to-weight ratios.

- Hydraulic actuators have several advantages and disadvantages due to the use of high pressure fluid.
- They can offer very large force or torque and high power-to-weight ratios.
- Both linear and rotary motions are readily available with small inertia of the moving part.
- However, the hydraulic power supply is bulky and the cost of the proportional, fast-response servovalves are high. Leaks and maintenance issues have limited the use and application of hydraulically powered robots.

Applications of hydraulic actuators to robot:

- (a) Big Dog (Boston dynamics)
- (b) Sarcos exosceleton (Raytheon)
 - (c) Magnum
- https://www.youtube.com/watch?v=M8YjvHYbZ9w&feature=emb_logo
- https://www.youtube.com/watch?time continue=28&v=Nhj3Z9o6t0g&feature=emb logo


Pneumatic Actuators

INSTITUTIONS ANDHRA PRADESH, INDIA

- Pneumatic actuators are similar to hydraulic actuators.
- Pneumatic actuators are primarily found in simple manipulators.
- Typically they provide uncontrolled motion between mechanical limit stops.
- These actuators provide good performance in point to point motion.
- They are simple to control and are low in cost.
- Pneumatic motors have several advantages over electric motors.
- They are relatively safe in the explosive environment.

- Pneumatic actuators are not used for applications requiring large forces or torques since they produce less power than hydraulic actuators or electric actuators.
- However, they are used in robot hands or artificial muscles, which require high power-toweight ratios.
- Pneumatic artificial muscles are contractile or extensional devices operated by pressurized air filling a pneumatic bladder.
- Pneumatic actuators can be used for medical robots since they are not affected by magnetic field.

Applications of pneumatic actuator:

- (a) robot hand and arm with artificial muscle (Shadow robot) and
- (b) pneumatic step motor and MrBot (Urobotics, Johns Hopkins)

References

Industrial Robotics Technology, Programming and Applications, Groover Mikell P., McGraw-Hill, New York

Introduction to Robotics, Craig John J., Addison Wesley, New Delhi "Robotics and Control" R K & Nagrath I J / Tata McGraw-Hill,india,edition, 2003

https://nptel.ac.in/courses/112/105/112105249/

https://nptel.ac.in/courses/112/101/112101099/

https://nptel.ac.in/courses/112/101/112101098/

by Yoram Koren

McGraw Hill Break Company
Ton Lie Ji Lean Jan François destinati Regita Mariney
Tonominey James Mariney Marine Medical Regita Mariney
Tonomin From 3th Park Suppose Spiling States States

Introduction to Robotics

- 2.12 Lecture Notes

H. Harry Asada oni Professor of Mechanical Engineering

Fall 2005

ROBOTICS AND AUTOMATION HANDBOOK

Thomas R. Kurfess Ph.D., PE.

In this lecture you have been briefly introduced to:

- Types of Actuators
- Working Principles
- Applications

Congratulations, you have finished Lecture 4 of Unit-II

Review Questions

Draw circuit diagram of Hydraulic actuators.

State constructional differences of brushless DC motor and conventional DC motor.

Where do you recommend stepper motors.

List applications and limitations of Pneumatic actuators.
