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Course? 

• What is “Fluid Mechanics & Hydraulic Machinery”? 



Course Pre- requisites 
  

 

Requires knowledge of 

• Engineering Mechanics  



Course Objectives 

Expected to: 

 

 Understand the properties of fluids, its kinematic and dynamic behavior 
through various laws of fluids like continuity, Euler’s, Bernoulli’s equations, 
energy and momentum equations.  

 Further, the student shall able to understand the theory of boundary layer, 
working and performance characteristics of various hydraulic machines like 
pumps and turbines.  



Course Outcomes 

On Completion of the course, the student will be able to  

 

 Describe the properties of fluids and Explain the mechanics of fluids at rest 
and in motion by observing the fluid phenomena.  

 Distinguish the types of flows and continuity equation.  

 Derive Euler’s Equation of motion and Deduce Bernoulli’s equation.  

 Examine energy losses in pipe transitions and Sketch energy gradient lines.  

 Describe Basic working of hydraulic turbines and hydraulic pumps.  
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Syllabus(Cont…) 

UNIT-I : 

 FLUID STATICS 

Dimensions and units: physical properties of fluids- specific gravity, viscosity surface 

tension- vapor pressure and their influence on fluid motion- atmospheric, gauge and 

vacuum pressure – measurement of pressure- Piezometer, U-tube and differential 

manometers.  



UNIT-II:  

FLUID KINEMATICS:  

Stream line, path line and streak lines and stream tube, classification of flows-steady & 

Unsteady, uniform, non uniform, laminar, turbulent, rotational, and ir-rotational flows-

equation of continuity for one dimensional flow.  

 
FLUID DYNAMICS: surface and body forces –Euler’s and Bernoulli’s equations for flow 
along a stream line, momentum equation and its application on force on pipe bend. 

Syllabus(Cont..) 



UNIT-III: 
CLOSED CONDUIT FLOW: Reynold’s experiment- Darcy Weisbach equation- Minor losses 
in pipes- pipes in series and pipes in parallel- total energy line-hydraulic gradient line. 
Measurement of flow: pilot tube, venturi meter, and orifice meter, Flow nozzle. 
 
BOUNDARY LAYER THEORY AND APPLICATIONS: Concepts of boundary layer, boundary 
layer thickness and equations, momentum integral equation, boundary layer separation 
and its control, Cavitation. Circulation, Drag and lift on immersed bodies, Magnus effect. 
 
UNIT-IV  
BASICS OF TURBO MACHINERY: hydrodynamic force of jets on stationary and moving 
flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work 
done and efficiency, flow over radial vanes.  

Syllabus(Cont..) 



HYDRAULIC TURBINES: classification of turbines, impulse and reaction turbines, Pelton 
wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies , 
hydraulic design – draft tube-theory- functions and efficiency.  
 
PERFORMANCE OF HYDRAULIC TURBINES: Geometric similarity, Unit and specific 
quantities, characteristic curves, governing of turbines, selection of type of turbine, 
cavitation, water hammer.  
 
UNIT-V: 
CENTRIFUGAL PUMPS: classification, working, work done – manomertic head- losses and 
efficiencies specific speed- pumps in series and parallel-performance characteristic 
curves, NPSH.  
RECIPROCATING PUMPS: Working, Discharge, slip, indicator diagrams.  
 

Syllabus(Cont..) 



What is “Fluid Mechanics & Hydraulic 
Machinery”? 
 Fluid mechanics  is the study of fluid behavior (liquids, gases, blood, and plasmas) at 
rest and in motion. Fluid mechanics has a wide range of applications in mechanical and 
chemical engineering, in biological systems, and in astrophysics 
 
 
 



Hydraulic Machines :  
Those machines which convert either hydraulic energy ( energy possessed by 
water) into mechanical energy (P.E + K.E) or Mechanical energy into hydraulic 
energy 
 
 

What is “Fluid Mechanics & Hydraulic 
Machinery”?(Cont…) 



Text Books 



Reference Books 



Web References 

S.No Web-links  

1 https://nptel.ac.in/courses/112/105/112105171/ 

2 https://nptel.ac.in/courses/112/105/112105287/ 

3 https://cosmolearning.org/courses/fluid-mechanics/video-lectures/ 
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https://cosmolearning.org/courses/fluid-mechanics/video-lectures/
https://cosmolearning.org/courses/fluid-mechanics/video-lectures/
https://cosmolearning.org/courses/fluid-mechanics/video-lectures/
https://cosmolearning.org/courses/fluid-mechanics/video-lectures/
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Introduction 
 

 
 Fluid mechanics is the science which deals with the action of forces on fluids 

at rest as well as in motion 

 If the fluids are at rest, the study of them is called fluid statics 

 If the fluids are in motion, where pressure forces are not considered, the 

study of them is called fluid Kinematics 

 If the fluids are in motion and the pressure forces are considered, the study 

of them is called fluid dynamics 

 



What is Fluid? 
 Matter exists in two states-  solid 

state and fluid state 

 This classification of matter is based 

on the spacing between different 

molecules of matter as well as on 

the behavior of matter when 

subjected to stresses 

 



What is Fluid?(Cont…) 
 In solid state molecules are  closely 

packed, solids possess compactness and 

rigidity 

 The molecules in fluid can move more 

freely within the fluid mass and therefore 

the fluids do not possess any rigidity 

 Thus Fluid exist in two form:- Liquid and 

Gas 



Difference between Liquid and Gas 
 Liquids flow and take the shape of their container but maintain a constant 

volume. Examples  : Water, Milk, Kerosene , Petrol, emulsions etc 

 Gases expand to fill the available volume 

 Liquids are incompressible While the gases are compressible 



Applications of Fluid Mechanics 

 Fluids are the principle transport media and hence play a central role in 

nature (winds, rivers, ocean , blood etc.) 

 Fluids are a source of energy generation (power) 

 They have several engineering applications 

– Mechanical engineering 

– Electrical engineering 

– Chemical Engineering 

– Aerospace engineering 



Applications of Fluid Mechanics(Cont…) 

Automobiles Medical Science 

Piping Design Ships and Boats 



Applications of Fluid Mechanics(Cont…) 

Electric Appliances Aircrafts 

Power and Process plants Fire Safety 



Applications of Fluid Mechanics(Cont…) 

Nature 



Leaking crude oil from the grounded tanker Argo Merchant (Nantucket Shoals 
1976) 

Fluid Flow Examples 



Smoke plumes 

Fluid Flow Examples (Cont…) 



Turbulent Jet impinging into fresh water 

Fluid Flow Examples (Cont…) 



 Classification of fluid mechanics 

 Difference between liquid and gas 

 Applications of fluid mechanics 

 Fluid flow examples 

 

Summary 
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Density or Mass Density(𝝆) 
 

 

 Density is the mass per unit volume of a fluid. In other words, it is the ratio 

between mass (m) and volume (V) of a fluid 

 Density is denoted by the symbol ‘ρ’. Its unit is kg/m3 

 

 

Mathematically, mass density is written as: 

 𝝆 =  
𝑴𝒂𝒔𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒇𝒍𝒖𝒊𝒅

𝑽𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒇𝒍𝒖𝒊𝒅
 = 

𝒎

𝑽
 

Fig: Different molecules arrangement in a same volume of  space 



Problem:1 
 

 

A quantity of helium gas at 0°C with a volume of 4.00 m3 has a mass of 0.712 kg 
at standard atmospheric pressure. Determine the density of this sample of 
helium gas? 

Given Data: 

Volume V = 4 m3 

 

Mass  m= 0.712 kg      
 

Density 𝜌     =     

𝒎

𝑽          =
0.712

4     =    0.178 
     

kg
m3  



Specific Weight or Weight Density(w) 
 

 

 Specific weight or weight density of a fluid is the ratio between the weight of 
a fluid to its volume and it is denoted by the symbol w(N/𝑚3) 

 Thus mathematically 

  w = 
𝑊𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑
 = 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑋 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑣𝑖𝑡𝑦

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑
 

        =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑋 𝑔

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑
  [ since 𝝆 =  

𝑴𝒂𝒔𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒇𝒍𝒖𝒊𝒅

𝑽𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒇𝒍𝒖𝒊𝒅
 ] 

 

      w  = 𝜌 𝑋 𝑔          

      w  = 𝝆𝒈 

 



Specific Volume 
 

 
 It is defined as the volume of a fluid occupied by a unit mass or volume per 

unit mass of a fluid is called specific volume. It is expressed in m3/kg 

 Specific Volume =  
Volume of the Fluid

Mass of the Fluid
 

       =  
1

mass of the fluid/volume of the fluid
 

       =  
1
ρ

 

 



Specific Gravity or Relative Density(S) 
 

 
 Specific gravity is defined as the ratio of the weight density (or density) of a 

fluid to the weight density (or density) of a standard fluid 

 For liquids the standard fluid is water and for gases the standard fluid is air 

 

Mathematically, 

  S (for liquids) = 
𝑾𝒆𝒊𝒈𝒉𝒕 𝒅𝒆𝒏𝒔𝒊𝒕𝒚  𝒅𝒆𝒏𝒔𝒊𝒕𝒚 𝒐𝒇 𝒍𝒊𝒒𝒖𝒊𝒅

𝑾𝒆𝒊𝒈𝒉𝒕 𝒅𝒆𝒏𝒔𝒊𝒕𝒚  𝒅𝒆𝒏𝒔𝒊𝒕𝒚 𝒐𝒇 𝒘𝒂𝒕𝒆𝒓
 

 

   S (for gases) = 
𝑾𝒆𝒊𝒈𝒉𝒕 𝒅𝒆𝒏𝒔𝒊𝒕𝒚  𝒅𝒆𝒏𝒔𝒊𝒕𝒚 𝒐𝒇 𝒈𝒂𝒔

𝑾𝒆𝒊𝒈𝒉𝒕 𝒅𝒆𝒏𝒔𝒊𝒕𝒚  𝒅𝒆𝒏𝒔𝒊𝒕𝒚 𝒐𝒇 𝒂𝒊𝒓
 



Problem:2 
 

 



Problem:2(Cont…) 
 

 



Problem:3 
 

 



Problem:3(Cont…) 
 

 



Viscosity 
 

 
 Viscosity is a measure of a fluid's resistance to flow 

 It describes the internal friction of a moving fluid 

 A fluid with large viscosity resists motion because its molecular makeup 

gives it a lot of internal friction 

 A fluid with low viscosity flows easily because its molecular makeup results 

in very little friction when it is in motion 

 



Viscosity(Cont…) 
 

 



Viscosity(Cont…) 
 

 

 Gases also have viscosity, although it is a little harder to notice it in ordinary 
circumstances 

Fig. Different fluid flow behavior  in a same type of glass tube  



Newton’s law of viscosity 
 

 

 It states that the shear stress on a fluid element layer is directly proportional 
to the rate of shear strain 

 dy = Distance between adjacent 

             fluid layers. 

 du = Velocity difference between 

 adjacent fluid layers. 

  

 τ ∝  
du
dy

 



Newton’s law of viscosity(cont…) 
 

 

 After removing proportionality the equation becomes  

  τ = μ 
du
dy

 

 The constant of proportionality is called the coefficient of dynamic viscosity or 

coefficient  of viscosity  

 Where τ = shear stress 

 
du
dy

 = Velocity Gradient or Rate of shear strain or Rate of shear deformation 

                  μ = coefficient of viscosity or coefficient of dynamic viscosity  



Units of Viscosity 
 

 
 μ= 

τ
du
dy

= 
Force/Area

du
dy

 

=
Force/Area

1
sec

=
Force𝑿 Sec

Area
 



Kinematic viscosity 
 

 

 

 The kinematic viscosity(𝜗) (also called "momentum diffusivity") is the ratio 
of the dynamic viscosity( μ) to the density of the fluid( ρ) 

 
 

Mathematically,  𝝑= 
μ
ρ

 

 

 



Kinematic viscosity(Cont…) 
 

 

Units: 

In MKS and SI units: m2/sec  , 𝝑= 
μ
ρ

=

Force𝑿 Sec
Area
𝒎𝒂𝒔𝒔

𝑨𝒓𝒆𝒂 𝑿 𝑳𝒆𝒏𝒕𝒉

=
mass X 𝒂𝑿 SecX length

mass
               

 In CGS units: cm2/s,            

 This CGS units of Kinematic viscosity is also known as Stroke 

 

 



Problem:4 
 

 



Problem:4(Cont…) 



 Density is the mass per unit volume of a fluid 

 Specific weight of a fluid is the ratio between the weight of a fluid to its volume  

 Volume per unit mass of a fluid is called specific volume 

 Specific gravity is  the ratio of the weight density of a fluid to the weight density of a standard 

fluid 

 Viscosity is a measure of a fluid's resistance to flow  

 Newton’s law of viscosity states that the shear stress on a fluid element layer is directly 

proportional to the rate of shear strain 

 The kinematic viscosity is the ratio of the dynamic viscosity( μ) to the density of the fluid (ρ) 

Summary 
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Problem:1 
 

 



Problem:1(Cont…) 
 

 



Problem:1(Cont…) 
 

 



Problem:2 
 

 



Problem:2(Cont…) 



Problem:3 
 

 



 

 

Problem:3(Cont…) 



 

 

Problem:3(Cont…) 



 

 

Problem:3(Cont…) 



 

 

Problem:3(Cont…) 



Variation of viscosity with Temperature 

 

 

 The relation between viscosity and temperature for liquids and gases are 

(i) For Liquids:  𝝁 = 𝝁𝟎(
𝟏

𝟏+𝜶𝒕+ 𝜷𝒕𝟐) 

Where,  𝜇 = Viscosity of liquid at 𝑡0C, in poise,  𝜇0 = Viscosity of liquid at 

00 C , in poise 

𝛼, 𝛽 = Constants for the liquid 

 For water 𝜇0 = 1.79X 10−3 poise,  

   𝛼= 0.03368,  𝛽 =0.000221 



Variation of viscosity with Temperature 
(Cont…) 

 

 
(ii) For gases:  

 𝝁 = 𝝁𝟎 + 𝜶𝒕 −  𝜷𝒕𝟐 

 Where, 𝜇0 = 0.000017 poise,  

                𝛼= 0.000000056 

                𝛽 =0.1189 X 10−9 

 

 



Types of Fluids 
 

 

 Fluids can be classified into five basic types.  

They are: 

1. Ideal Fluid 

2. Real Fluid 

3. Newtonian Fluid 

4. Non-Newtonian Fluid 

5. Ideal-plastic Fluid 



 

 
 Ideal Fluid: Which is incompressible and is 

having no viscosity 

 Real Fluid: Which possesses viscosity. All 

the fluids in actual practice are real fluids 

 Newtonian Fluid: A real fluid, in which the 

shear stress is directly proportional to the 

rate of shear strain 

Types of Fluids (Cont…) 



 

 
 Non-Newtonian Fluid: A real fluid , in 

which the shear stress is not proportional 

to the rate of shear strain(or velocity 

gradient) 

 Ideal Plastic Fluid:  A fluid, in which 

shear stress is more than the yield value 

and shear stress is proportional to the 

rate of shear strain 

Types of Fluids (Cont…) 



 Some Extra problems are solved  related to viscosity 

 The relation between viscosity and temperature for liquids 𝝁 = 𝝁𝟎(
𝟏

𝟏+𝜶𝒕+ 𝜷𝒕𝟐) 

 The relation between viscosity and temperature for gases  𝝁 = 𝝁𝟎 + 𝜶𝒕 −

 𝜷𝒕𝟐 

 Fluids can be classified as Ideal Fluid, Real Fluid, Newtonian Fluid, Non-
Newtonian Fluid and Ideal-plastic Fluid 

Summary 
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Compressibility and Bulk Modulus 
 

 

 Compressibility is the reciprocal of the bulk modulus of elasticity  

 Bulk modulus is defined as the ratio of compressive stress(Increase of 
Pressure) to volumetric strain 

Bulk Modulus  K =   
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑡𝑟𝑎𝑖𝑛
 

  

Volumetric Strain = - 
𝒅∀

∀
  

-ve sign means the volume decreases  

with increase of pressure. 

 



Compressibility and bulk modulus(Cont…) 

 

 
Bulk Modulus  K =   

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑡𝑟𝑎𝑖𝑛
 

  = 
𝒅𝒑

−𝒅∀

∀

  = - 
𝒅𝒑

𝒅∀
∀ 

 Compressibility = 
𝟏

𝑲
 



Problem:1 



Problem:1 (Cont…) 



Surface Tension 
 

 

 Ever wonder why water beads up on a car,  how some insects can walk on 
water,  how bubbles hold themselves together? 

 

 

 

 

 

 

 The answer is surface tension: Because of cohesion between its molecules, 
a substance tends to contract to the smallest area possible 

 



 

 

 Water on a waxed surface, forms round beads. More weak bounds can be 
formed between molecules, if they were arranged on flat layer 

 Cohesive forces are greater in mercury than in water, so it forms a more 
spherical shape  

 Cohesive forces are weaker in alcohol than in water, so it forms a more 
flattened shape 

Surface Tension (Cont…) 



 

 

 

 

  A molecule in fluid is pulled in all directions by its neighbors with approximately 

equal strength, so the net force on it is about zero 

 This is not the case at the surface. Here the net force on a molecule is downward. 

Thus, the layer of molecules at the surface are slightly compressed 

 Surface tension can be defined as the force per unit length holding a surface together 

Surface Tension (Cont…) 



Surface Tension on Liquid Droplet 
 

 

 

 
 Consider a small spherical droplet of a liquid of radius ‘r’ 

 On the entire surface of the droplet, the tensile force due to surface tension will be 

acting 

 Let σ = Surface tension of the liquid 

             P =Pressure intensity inside the droplet  

            (in excess of the outside pressure intensity) 

             d= Dia. of droplet 

 



 Surface tension acting around the circumference = 𝜍 X Circumference 
          = 𝜍 X𝜋𝑑 

 Pressure force on the area 
𝜋

4
𝑑2 = P x 

𝜋

4
𝑑2 

 The two forces will be equal and opposite under equilibrium conditions 
   

   P x 
𝝅

𝟒
𝒅𝟐 =  𝝇 x𝝅𝒅 

 

  P= 
𝝇 𝐱 𝝅𝒅 

𝝅

𝟒
𝒅𝟐

 

 

  P = 
𝟒 𝝇  

𝒅
 

Surface Tension on Liquid Droplet(Cont…) 



Surface Tension on Hollow Bubble 
 

 
 A Hollow bubble like a soap bubble in air has two surfaces in contact with 

air. One is inside and other is  outside 

 Thus two surfaces are subjected to surface tension 

P x 
𝝅

𝟒
𝒅𝟐 =  2 x (𝝇 x𝝅𝒅) 

P= 
𝟐𝝇 𝝅𝒅 

𝝅

𝟒
𝒅𝟐

  

 

 P= 
𝟖𝝇  

𝒅
 



Surface Tension on a Liquid Jet 
 Consider the equilibrium of the semi jet 

 Force due to pressure  = P x area of semi jet 

      = P x L x d 

 Force due to surface tension = 𝜍  x 2L 

 Equating the forces  

   P x L x d =𝜍  x 2L 

   P= 
𝜍  x 2L 

𝐿 𝑋 𝑑
⟹P= 

𝟐𝛔 
 𝐝

 
 
  
 



Problem:2 



Capillary Action 
 

 

 

 
 How do trees pump water  from the ground to their highest leaves? Why does liquid 

wax rise to the tip of a candle?  



Capillary Action(Cont…) 
 

 

 

 

 These are all examples of capillary -It is due to adhesion and cohesion 

 Capillarity is defined as a phenomenon of rise or fall 

of a liquid surface in a small tube relative to the 

adjacent general level of liquid when the tube is held 

vertically in the liquid 

 The rise of liquid surface is known as capillary rise 

while the fall of the liquid surface is known as 

capillary depression 



Expression for Capillary Rise 
 

 

 Let h= height of the liquid in the tube 

 Under a state of equilibrium the weight of liquid of height h is balanced by 
the force at the surface of the liquid in the tube 

 But the force at the surface of the liquid in the tube is due to surface 
Tension 

 𝜃 = 𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑞𝑢𝑖𝑑 𝑎𝑛𝑑  

              𝑔𝑙𝑎𝑠𝑠 𝑡𝑢𝑏𝑒 

 The weight of liquid of height h in the tube  

 = (Area of tube x h) x 𝜌 x g 

 = 
𝜋

4
𝑑2x h x 𝜌 x g 

 

  



 

 

 

 

 Vertical component of the surface tensile force =𝜍 x 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 x cos𝜃 
                 = 𝜍 x 𝜋 𝑑 xcos𝜃 
For equilibrium ,   

   
𝜋

4
𝑑2x h x 𝜌 x g =  𝜍 x 𝜋 𝑑 xcos𝜃 

    h= 
𝜍 x 𝜋 𝑑 xcos𝜃 

𝜋

4
𝑑2 x 𝜌 x g

 

     

     h= 
𝟒𝝇cos𝜽 

 𝝆 x g x d
 

 The value of  𝜃 between water and clean glass tube is approximately equal to zero 
and hence  cos𝜃 is equal to unity. Then rise of water is given by  

    h= 
𝟒𝝇

 𝝆 x g x d
 

Expression for Capillary Rise (Cont...) 



Expression for capillary Fall  
 

 

 If the glass tube is dipped in mercury 

  The level of mercury in the tube will be lower than 

the general level of the outside liquid as shown in 

Fig 

 Then in equilibrium, two forces are acting on the 

mercury inside the tube 

 First one is due to surface tension acting in down 

warddirection and equal to 𝜍 x 𝜋 𝑑 xcos𝜃 



 Second force is due to hydrostatic force acting upward and equal to intensity 
of  Pressure at a depth ‘h’ x Area 

 

 = 𝑃x
𝜋

4
𝑑2 =   (𝜌g h) x 

𝜋

4
𝑑2 

Equating , 
 

  𝜍 x 𝜋 𝑑 x cos𝜃 = (𝜌g h) x 
𝜋

4
𝑑2 

 

 h =  
𝟒𝝇  cos𝜽

𝝆g𝒅
 

 Value of 𝜃 for mercury and glass tube is 1280  

Expression for capillary Fall (Cont…) 



Problem:3 



Problem:3 (Cont…) 



Vapor Pressure 
 

 

 Vapor pressure: the pressure at which a liquid will boil 

 Vapor pressure ↑ when temperature increases 

 At atmospheric pressure, water  will boil at 100 °C  

 Water can boil at lower temperatures if the pressure is lower 

 • When vapor pressure > the liquid’s actual pressure 

 • It will boil. 



Cavitation 
 

 

 It is the phenomenon of formation of vapour bubbles of a flowing liquid in a 
region where the pressure of the liquid falls below the vapour pressure and 
sudden collapsing of these vapour bubbles in a region of a higher pressure 



 Compressibility is the reciprocal of the bulk modulus of elasticity 

 Bulk modulus is defined as the ratio of compressive stress to volumetric strain 

 Surface tension can be defined as the force per unit length holding a surface together 

 Relation between surface tension  and pressure for Liquid Droplet :P = 
𝟒 𝝇  

𝒅
 

 Relation between surface tension  and pressure for Hollow Bubble:  P= 
𝟖𝝇  

𝒅
 

 Relation between surface tension  and pressure for a Liquid Jet: P= 
𝟐𝛔 
 𝐝

 

 Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small tube 

relative to the adjacent general level of liquid when the tube is held vertically in the 

liquid 

Summary 
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Pressure 
 Pressure is the force exerted per unit area 

 Pressure is force applied to, or distributed over, a surface 

 The pressure P of a force F distributed over an area A is defined as P = F/A 

 Units – N/m2, or Pascal (Pa) 

 Atmospheric pressure (1 atm.) is equal to 101325 N/m2 

 1 bar = 105 Pascal 

 1 pound per square inch (1 psi) is equal to: 

1 psi = 6944 Pa = 0.068 atm   ,   1atm = 14.7 psi 

 



Pascal’s Law 

“It states that the pressure or intensity of pressure at a point in  a static fluid is equal in 

all directions ” 

 Forces acting on the fluid element are: 

1. Pressure forces normal to the surfaces 

2. Weight of element in the vertical direction 

1. Pressure forces: 

On Face AB = Px x Area of face AB 

     = Px x dy x 1 



Pascal’s Law (Cont…) 
Similarly , 

 force on face AC =  Py x dx  x 1 

 force on face BC =  Pz x ds  x 1 

 

2. Weight of the element 

         = (mass of element )x g 

          = (volume x density) x g 

         = (
AB x AC

2
 x1) x 𝜌 x g 

 



  Resolving forces in x-direction  

 Px x dy x 1- ( Pz x ds  x 1) sin(90 - 𝜃) = 0 

 Px x dy x 1- ( Pz x ds  x 1) cos𝜃 = 0 

But ds cos𝜃 = AB=dy 

 Px x dy x 1-  Pz x dy x 1 = 0 

  Px=  Pz 

Similarly ,  
    Resolving the forces in  y- direction 

  Py x dx x 1- ( Pz x ds  x 1) cos (90 - 𝜃) -  
𝑑𝑥 x dy

2
 x 1x 𝜌 x g = 0 

Pascal’s Law (Cont…) 



 

 Py x dx - Pz x ds  sin 𝜃-  
𝑑𝑥 x dy

2
 x  𝜌 x g = 0 

But ds sin 𝜃= dx and also element is very small and hence weight is negligible 
 

 Py dx - Pz 𝑑𝑥 = 0 

 Py = Pz 

Hence  
 𝑷𝐱= 𝑷𝒚 = 𝑷𝒛 

i.e  pressure at any point is  the same in all the directions 
 

Pascal’s Law (Cont…) 



Hydrostatic Law 

“It states that rate of increase of pressure in a vertical direction is equal  to weight 
density of the fluid at that point” 
 

P= 𝝆gZ 



Problem:1 
Find the weight that can be lifted by a hydraulic press when the force applied at the 
plunger is 350 N and has diameters of 250 mm and 40 mm of ram and plunger 
respectively 



Problem:1(Cont…) 



Problem:2 
An oil of specific gravity 0.8 is under pressure of 137.2 kPa, then determine pressure 
head expressed in terms of meters of oil. 



Problem:3 



Problem:3(Cont..) 



Problem:3(Cont..) 



Problem:3(Cont..) 



Problem:4 



Problem:4( Cont…) 



Pressure Measurement Terms 
Absolute Pressure 

 Measured above total vacuum or zero absolute. Zero absolute represents 

total lack of pressure 

 

Absolute Pressure =  

Atmospheric Pressure + Gauge Pressure 

𝑷𝒂𝒃= 𝑷𝒂𝒕𝒎 + 𝑷𝒈𝒂𝒖𝒈𝒆 

 



Atmospheric Pressure 

 The pressure exerted by the earth’s atmosphere. Atmospheric pressure  at sea level is 

14.696 psi (1 psi = 6944 Pa = 0.068 atm ) 

 The value of atmospheric pressure decreases  with increasing altitude 

Barometric Pressure 

Atmospheric pressure is also known as barometric pressure because barometers are 

used to measure it 

Pressure Measurement Terms(Cont…) 



Vacuum Pressure 

 Pressure below the atmospheric pressure 

Vacuum Pressure =  

Atmospheric Pressure – Absolute pressure 

𝑷vacuum= 𝑷𝒂𝒕𝒎  − 𝑷ab 

Gauge Pressure 

 The pressure above atmospheric pressure 

 Can be converted to absolute by adding actual atmospheric pressure value 

(𝑷𝒈𝒂𝒖𝒈𝒆 = 𝑷𝒂𝒃 −𝑷𝒂𝒕𝒎 ) 

Pressure Measurement Terms(Cont…) 



Problem:5 



Problem:5(Cont…) 



Problem:5(Cont…) 



 Pressure is measured as ratio of force per unit area 

 From Pascal’s law pressure at a point in  a static fluid is equal in all directions 

 From Hydrostatic Law, rate of  increase of pressure in a vertical direction is equal  to 

weight density of the fluid at that point 

 Pressure measurement terms like  absolute pressure,  atmospheric pressure, 

barometric pressure ,vacuum pressure and gauge pressure are important for pressure 

measuring instruments 

Summary 
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Measurement of Pressure 
The pressure of a fluid is measured by the 

following devices 

1. Manometers          2. Mechanical Gauges 

Manometers:   

 Manometers are defined as the devices used 

for measuring the pressure at a point in a fluid 

by balancing the column of fluid by the same 

or another column of the fluid 



Measurement of Pressure(Cont…) 

Mechanical Gauges: 

 Mechanical Gauges are defined as the 

devices used for measuring the pressure 

by balancing the fluid column by the 

spring or dead weight  



Classification 



Piezometer 
 A piezometer is the simplest form of the 

manometer 

  It measures gauge pressure only 

 The pressure at any point in the liquid is 

indicated by the height of the liquid in the 

tube above that point 

 Which can read on the calibrated scale on 

glass tube 



Piezometer(Cont…) 
 The pressure at point A is given by  
 
  P= 𝜌𝑔ℎ = 𝑤ℎ 
 

 h= 
𝑷

𝝆𝒈
⟹ Piezometer head 

     
     
    
 
 



U-Tube Manometer 
 It can be measure large pressure or vacuum pressure and gas pressure 
 
 Pressure at XX in left column = Pressure at XX in right column 

  

 

 𝑃𝐴 +𝜌1gℎ1 = 𝜌2gℎ2 

 𝑃𝐴 = 𝜌2gℎ2 - 𝜌1gℎ1 

 

 



 

Now , 𝑃𝐴= 𝜌 gh 

h =head in terms of water column 
 𝜌gh = 𝜌2gℎ2 - 𝜌1gℎ1 
 

 h = 
𝜌2

𝜌
 ℎ2 - 

𝜌1

𝜌
 ℎ1 

 h = 𝒔𝟐 𝒉𝟐 - 𝒔𝟏 𝒉𝟏 
 

U-Tube Manometer(Cont…) 



Problem:1 



Problem:1(Cont..) 



Problem:1(Cont..) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:3 



Problem:3(Cont…) 



Problem:3(Cont…) 



Problem:3(Cont…) 



 Pressure of a fluid is measured by Manometers and  Mechanical Gauges 

 A piezometer is the simplest form of the manometer 

 Piezometer head is given by h= 
𝑷

𝝆𝒈
 

 U-Tube Manometer can be measure large pressure or vacuum pressure and 

gas pressure 

 Head in terms of water column in U-tube manometer is given by   

h= 𝒔𝟐 𝒉𝟐 - 𝒔𝟏 𝒉𝟏 

Summary 
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Single column Manometer  

Single column manometer is divided into mainly two types 

A. Vertical single column 
manometer 

B. Inclined single column 
manometer 



(A) Vertical Single Column 
Manometer 
 One of the limbs in double column 

manometer is converted into a reservoir 

having large cross sectional area (about 100 

times) with respect to the other limb 

 Volume of heavy liquid fall in reservoir = 

Volume of heavy liquid rise in right column 

 A x ∆ℎ = a x ℎ2 

 ∆ℎ = 
a x ℎ2

𝐴
 



Pressure in left column = Pressure in right column 

P+ 𝜌1 g ℎ1 + 𝜌1 g∆ℎ= 𝜌2 g ℎ2 +𝜌2 g ∆ℎ  

P= 𝜌2 g ℎ2 +𝜌2 g ∆ℎ −𝜌1 g ℎ1 − 𝜌1 g∆ℎ 

P=∆ℎ[𝜌2 g - 𝜌1 g ] + 𝜌2 g ℎ2 - 𝜌1 g ℎ1 

But     ∆ℎ = 
a x ℎ2

𝐴
 

P= 
a x ℎ2

𝐴
 [𝜌2 g - 𝜌1 g ] + 𝜌2 g ℎ2 - 𝜌1 g ℎ1 ------eq(1) 

(A) Vertical Single Column 
Manometer(Cont…) 



 “ A “is very large as compared to “a” , so  “ 
a 
𝐴

  “ 

becomes very small , then  neglecting 
a x ℎ2

𝐴
 

{ P= 
a x ℎ2

𝐴
 [𝜌2 g - 𝜌1 g ] + 𝜌2 g ℎ2 - 𝜌1 g ℎ1 ------eq(1) } 

 

 P = 𝝆𝟐 g 𝒉𝟐 - 𝝆𝟏 g 𝒉𝟏  

(A) Vertical Single Column 
Manometer(Cont…) 



Problem:1 



Problem:1( Cont…) 



(B) Inclined single column manometer 
 It is modified form of vertical column manometer  

 This is  useful for measuring small pressure values 

 
 Here vertical height will be ℎ2 =  𝑙 sin𝛼 

 It will be substitute into the eq(1) of 

vertical single column manometer 

  [P= 
a x ℎ2

𝐴
 [𝜌2 g - 𝜌1 g ] + 𝜌2 g ℎ2 - 𝜌1 g 

ℎ1 ------eq(1)] 

 



Hence 

 P= 
a 𝑙 sin𝛼 

𝐴
 [𝜌2 g - 𝜌1 g ] + 𝜌2 g 𝑙 sin𝛼 − 𝜌1 g ℎ1 

  

Since , a<< A , neglecting first term 

 P= 𝜌2 g ℎ2 - 𝜌1 g ℎ1 

But P= 𝜌𝑔ℎ 

 𝜌𝑔ℎ = 𝜌2 g ℎ2 - 𝜌1 g ℎ1 

  h= 𝒔𝟐 l sin𝜽 - 𝒔𝟏 𝒉𝟏 

(B) Inclined single column 
manometer(Cont…) 



U-tube Differential Manometer 
Case 1: U-tube upright differential manometer 

connected between two pipes at different 

levels and carrying different fluids 

 Let  h= Difference of mercury level in the U – 

tube 

y= Distance of the center of B, from the mercury 

level in the in the right limb 



U-tube Differential 
Manometer(Cont…) 
x= Distance of the center of A, from the mercury level 

in  the right limb 

𝜌1= Density of liquid at A 

𝜌2= Density of liquid at B 

𝜌𝑔= Density of heavy  liquid or mercury 

 Taking datum line at X-X 

Pressure above X-X in the left limb = 𝑃𝐴 + 𝜌1g( x + h) 



Pressure above X-X in the right limb = 𝑃𝐵 + 𝜌2gy + 𝜌𝑔gh  

Equating the two pressures , 

 𝑃𝐴 + 𝜌1g( x+h)  = 𝑃𝐵 + 𝜌2gy + 𝜌𝑔gh  

 𝑃𝐴- 𝑃𝐵 = 𝜌𝑔gh +𝜌2gy  −𝜌1g( x+h) 

              𝑃𝐴- 𝑃𝐵 = 𝜌𝑔gh +𝜌2gy  −𝜌1gh−𝜌1g x 

Difference of pressure at A and B  

=  h g(𝜌𝑔 - 𝜌1) + 𝜌2gy - 𝜌1gx 

U-tube differential manometer 
(Cont…) 



Case 2: U- tube upright differential 

manometer connected at two points in a pipe  

at same level 

 In fig(b) the two points A and B are at the 

same level and contains the  Same liquid of 

density 𝜌1 

 

U-tube differential manometer(Cont…) 



Pressure above X-X in right limb = 

𝑃𝐵  + 𝜌1gx + 𝜌𝑔gh  

Pressure above X-X in left limb =  𝑃𝐴  +𝜌1g(x +h)  

 Equating the two pressures 

 𝑃𝐵  + 𝜌1gx + 𝜌𝑔gh = 𝑃𝐴  +𝜌1g(x +h)  

 𝑃𝐴 − 𝑃𝐵 =   𝜌𝑔gh +𝜌1gx - 𝜌1g(x+h)  

                𝑃𝐴 − 𝑃𝐵 = gh(𝝆𝒈- 𝝆𝟏) 

U-tube differential manometer(Cont…) 



Problem:2 



Problem:2(Cont…) 



Inverted U-tube differential 
manometer 



Problem:3 



Problem:3(Cont…) 



In this is lecture covered things like: 

 Inclined single column manometer are used to measure small pressure differences 

 U-tube differential manometers are used to measure the pressure difference between 

two pipes 

 Solved some problems on single column manometer and U-tube differential 

manometers 

Summary 
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What is Fluid Kinematics ? 

 Fluid kinematics deals with the motion of fluids without considering the 
forces and moments that cause the motion 



Methods of Describing Fluid Motion 

Fluid motion is described by two methods 

i) Langrangian Method   ii) Eulerian Method  



Methods of Describing Fluid Motion 
(Cont…) 



i) Langrangian Method 

In the Lagrangian description of fluid flow, 

individual fluid particles are "marked," and their positions, 

velocities, acceleration, temperature and  pressure etc. are 

described as a function of time 

Examples: 

 Track the location of a migrating bird 

 Travel with the flow and observe what happens around you 



 This method requires us to track the position 

and velocity of each individual fluid particle 

 If the number of objects is small, such as 

billiard balls on a pool table(as shown in side 

fig), individual objects can be tracked 

 However, if a fluid lump changes its shape, size 

and state as its moves with time, it is difficult 

to trace the lump in Lagrangian description 

i) Langrangian Method(Cont…) 



 To describe the fluid flow, a flow domain of a 

finite volume or control volume is defined, 

through which fluid flows in and out of the 

control volume 

 Instead of tracking individual fluid particles, we 

define field variables such as velocity, pressure 

as functions of space and time, within the 

control volume 

ii) Eulerian Method 



 Eulerian description is often more convenient for fluid mechanics applications 

 Experimental measurements are generally more suited with Eulerian 

approach 

Examples:   

 Counting the birds passing a particular location 

 Sit and observe a fixed area from a fixed point 

  

ii) Eulerian Method(Cont…) 



Types of  Fluid Flow 



Steady and Unsteady flows 
Steady flow: 

It is the type of flow in which the fluid characteristics like velocity, pressure, density , 

etc., at  a point do not change with time  

Mathematically: 

(
𝜕𝑉

𝜕𝑡
)𝑥0,𝑦,𝑧0

= 0,  

(
𝜕𝑝

𝜕𝑡
)𝑥0,𝑦,𝑧0

= 0,  

(
𝜕𝜌 
𝜕𝑡

)𝑥0,𝑦,𝑧0
= 0,  

Where (𝑥0, 𝑦, 𝑧0)  fixed point in the field 



Unsteady flow : 

It is the type of flow in which the fluid characteristics like velocity, pressure, density , 

etc., at  a point changes with time 

Mathematically: 

 (
𝜕𝑉

𝜕𝑡
)𝑥0,𝑦,𝑧0

 ≠ 0,  

 (
𝜕𝑝

𝜕𝑡
)𝑥0,𝑦,𝑧0

≠ 0,  

 (
𝜕𝜌 
𝜕𝑡

)𝑥0,𝑦,𝑧0
 ≠ 0,  

Where (𝑥0, 𝑦, 𝑧0)  fixed point in the field 

Steady and Unsteady flows(Cont…) 



One, Two and Three Dimensional 
Flows 

 Although in general all fluids flow three-dimensionally 

 Pressures and velocities and other flow properties varying in all directions, 

in many cases the greatest changes only occur in two directions or even only 

in one direction 

 In these cases changes in the other direction can be effectively ignored, for 

making analysis much more simple 



One-dimensional flow :    
 In which the flow parameter such as velocity is a function of time and one 

space co-ordinate only, say x 
 For a steady one-dimensional flow, the velocity is a function of one -space 

co-ordinate only 
 The variation of velocities in other two mutually perpendicular directions is 

assumed negligible  

Mathematically: 

 u = f(𝒙), v = 0, w= 0 

Where u, v and w are velocity components  
in x,y and z directions respectively 

One, Two and Three Dimensional 
Flows(Cont…) 



Two-dimensional flow: 

 In which the velocity is a function of time and two 

rectangular space co-ordinates say x and y 

 For a steady two dimensional flow  the velocity is a 

function of two space co-ordinates only 

 The variation of velocity in the third direction is 

negligible 

Mathematically: u = 𝑓1( x,y), v= 𝑓2( x,y),  and w = 0 

One, Two and Three Dimensional 
Flows(Cont…) 



Three – dimensional flow : 

 In which the velocity is a function of time and three mutually perpendicular 

directions  

 But for a steady three – dimensional flow the fluid parameters  are functions 

of three space co-ordinates (x, y and z) only 

Mathematically: 

u = 𝑓1( x,y,z), v= 𝑓2( x,y,z),  and w = 𝑓3( x,y,z)  

One, Two and Three Dimensional 
Flows(Cont…) 



Laminar and Turbulent flow 
Laminar flow :   

 In which the fluid particles move along well- defined paths or stream line 

and all the stream- lines are straight and parallel 

 Particles move in laminas or layers gliding smoothly over the adjacent layer 

 This type of flow is also called stream-line flow or viscous flow 

 
 



Turbulent flow :  

 In which the fluid particles move  in zig - zag way 

 Due to this, the eddies formation takes place which are responsible for high 

energy loss 

 

Laminar and Turbulent flow(Cont…) 



 For pipe flow , the type of flow is determined by a non-dimensional number 

is called Reynold’s number(𝑹𝒆) 

   𝑹𝒆 =
𝑽𝑫

𝒗
 

Where : D – Diameter of pipe, V- Mean velocity of flow in pipe, 𝒗 −  Kinematic 

viscosity of fluid 

If 𝑹𝒆 < 2000, then the flow is laminar flow 

If 𝑹𝒆 > 4000 , then the flow is turbulent flow 

If  2000 < 𝑹𝒆< 4000 , then the flow is transient flow 

Laminar and Turbulent flow(Cont…) 



Laminar and Turbulent flow(Cont…) 



 Fluid Motion is defined by two methods: i) Langrangian Method  ii) Eulerian Method  

  If flow properties do not change with time it is called steady flow 

 If flow properties changes with time it is called unsteady flow 

 For a steady one-dimensional flow, the velocity is a function of one –space –co-ordinate only 

 For a steady two dimensional flow  the velocity is a function of two space co-ordinates only 

 But for a steady three – dimensional flow the fluid parameters  are functions of three space co-

ordinates (x, y and z) only 

 In laminar flow all the stream- lines are straight and parallel 

 In turbulent  flow the fluid particles move  in zig - zag way 

Summary 
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Uniform and Non-uniform flow 
Uniform flow:  
The flow in which velocity at a given time does not change with respect to space 
(i.e., length of direction of flow) is called as uniform flow 
 
Mathematically: 

 (
𝜕𝑉

𝜕𝑠
)𝑡=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 0,  

Where  
𝜕𝑉 - Change of velocity 
𝜕𝑠 – Length of flow in the direction of S 
 
e.g. Constant discharge though a constant 
diameter pipe 



Non – Uniform flow :  

The flow in which velocity at a given time changes with respect to space (length 

of direction of flow) is called as non – uniform flow 

 

Mathematically: 

 (
𝜕𝑉

𝜕𝑠
)𝑡=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0,  

 

e.g., Constant discharge through variable diameter pipe 

Uniform and Non-uniform flow(Cont..) 



Uniform and Non-uniform flow(Cont..) 



Compressible and Incompressible flows 
Compressible Flow:  
 
In which density of the fluid changes from point to point  
  or 
Density(𝜌) is not constant for the fluid 
  
Mathematically: 
 

𝝆 ≠ 𝐂𝐨𝐧𝐭𝐚𝐧𝐭 



Incompressible flow 

 In which the density is constant for the fluid flow 

 Liquids are generally incompressible while gases are compressible 

Mathematically: 

𝝆 = 𝐂𝐨𝐧𝐭𝐚𝐧𝐭 

 

Compressible and Incompressible 
flows(Cont…) 



Rotational & Irrotational Flow 

Rotational Flows :-  

The flow in which fluid particle while flowing 

along stream lines, also rotate about their 

own axis is called as rotational flow 

Irrotational Flows:- 

The flow in which the fluid particle while 

flowing along stream lines, do not rotate 

about their axis is called as irrotational flow 



 In order to visualize the flow pattern it is useful to define some other properties of 

the flow 

 They are : 

1. Stream lines 

2. Path lines 

3. Streak lines 

Visualization of flow Pattern 



Stream line 
 Stream lines are a family of curves that are 

instantaneously tangent to the velocity vector 

of the flow 

 or 

 The flow in which every particle that passes a 

particular point moves along exactly the same 

path, as followed by the particles which 

passed the point earlier 



Stream line(Cont…) 



Characteristics of Streamline : 

 Streamlines can not cross each other 

 Streamline can't be a folding line, but a smooth curve 

 Streamline cluster density reflects the magnitude of velocity (Dense 

streamlines mean large velocity; while sparse streamlines mean small 

velocity) 

Stream line(Cont…) 



Stream line(Cont…) 



Path Line 
 A Path line is the actual path 

travelled by an individual fluid 
particle over some time period 

 
 And the path of a particle same 

as Streamline for Steady Flow 



Streak line 
 
 It is an instantaneous picture of the 

position of all particles in flow that 
have passed through a given point 

 
 Easy to generate in experiments like 

dye in a water flow, or smoke in an 
airflow 



Stream Tubes 
Stream tube :  

 Is an imaginary tube whose 

boundary consists of streamlines 

 The volume flow rate must be the 

same for all cross sections of the 

stream tube 



Comparison 



 The velocity at a given time does not change with respect to space is called as uniform flow 

 The velocity at a given time changes with respect to space  is called as non – uniform flow 

 In compressible flow density of the fluid changes from point to point  

 In incompressible flow the density is constant  

 The flow in which fluid particle while flowing along stream lines, also rotate about their own axis 

is called as rotational flow 

 The flow in which the fluid particle while flowing along stream lines, do not rotate about their axis 

is called as irrotational flow 

 A streamline is a path traced out by a massless particle as it moves with the flow 

 A Path line is the actual path travelled by an individual fluid particle over some time period 

Summary 
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Fluid Flow 

 Let’s consider a pipe in which a fluid is flowing with mean velocity, V,  in unit time, t, 

volume of fluid (AL) passes through section X-X, 



1. Volume flow rate:  Q = 
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑡𝑖𝑚𝑒
  = 

𝐴𝐿

𝑡
 

2. Mass flow rate:     M = 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑡𝑖𝑚𝑒
  = 

𝜌(𝐴𝐿)

𝑡
 

3. Weight flow rate: G = 
𝑊𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 

𝑡𝑖𝑚𝑒
 = 

𝜌𝑔(𝐴𝐿)

𝑡
 = 

𝜔(𝐴𝐿)

𝑡
 

Fluid Flow(Cont…) 



 Let’s consider a fluid flowing with mean 

velocity, V, in a pipe of uniform cross-

section 

 Thus volume of fluid that passes 

through section X-X in unit time ∆𝑡 , 

becomes (Here L= V∆𝑡 ) as  

Volume of fluid =LA 

            =(V∆𝑡) A 

 

Fluid Flow(Cont…) 



Volume flow rate: Q = 
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑡𝑖𝑚𝑒
 

  = 
(∆𝑡𝑉  ) A 

∆𝑡
 

               Q = AV 

Similarly 

  M  =
𝜌(𝐴𝐿)

∆𝑡
= 𝜌AV 

  G =
𝜔(𝐴𝐿)

∆𝑡
= 𝜔𝐴𝑉 

 

Fluid Flow(Cont…) 



Continuity 
 Matter cannot be created or destroyed - (it is simply 

changed in to a different form of matter) 

 This principle is known as the conservation of mass 

and we use it in the analysis of flowing fluids 

  The principle is applied to fixed volumes, known as 

control volumes as shown in figure 

 For any control volume the principle of conservation 

of mass says 

 Mass entering per unit time -Mass leaving per unit time 
= Increase of mass in the control volume per unit time 



Continuity Equation 
 For steady flow there is no increase in the mass within 

the control volume 

 So, Mass entering per unit time = Mass leaving per 

unit time 

 Lets consider a stream tube 

 𝜌1, 𝑣1 and 𝐴1 are mass density, velocity and cross 

sectional area at section1 

 Similarly 𝜌2, 𝑣2 and 𝐴2 are mass density, velocity and 

cross – sectional area at section 2 



According to mass conservation 

 𝑀1- 𝑀2 = 
𝑑𝑀𝐶𝑉

𝑑𝑡
 

 𝜌1 𝐴1 𝑉1 − 𝜌2 𝐴2 𝑉2 =  
𝑑𝑀𝐶𝑉

𝑑𝑡
 

For steady flow condition 
𝑑𝑀𝐶𝑉

𝑑𝑡
 = 0 

 𝜌1 𝐴1 𝑉1 − 𝜌2 𝐴2 𝑉2 =0 

 𝜌1 𝐴1 𝑉1 = 𝜌2 𝐴2 𝑉2 

  

Continuity Equation(Cont…) 



 M = 𝜌1 𝐴1 𝑉1 = 𝜌2 𝐴2 𝑉2 

 Hence, for stead flow condition, mass flow rate at section 1= mass flow rate 

at section 2. i.e., mass flow rate is constant 

 Assuming incompressible fluid, 𝜌1 = 𝜌2 = 𝜌 

   𝐴1 𝑉1 = 𝐴2 𝑉2 

   𝑄1 = 𝑄2 

 Therefore, according to mass conservation for steady flow of 
incompressible fluids volume flow rate remains same from section to 
section. (𝑄1 = 𝑄2= 𝑄3 = 𝑄4 etc)  

Continuity Equation(Cont…) 



Problem:1 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:3 



Problem:3(Cont…) 



Problem:3(Cont…) 



Problem:3(Cont…) 



Problem:3(Cont…) 



 Volume flow rate:  Q = 
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑡𝑖𝑚𝑒
   

 Matter cannot be created or destroyed - (it is simply changed in to a different form of 

matter) 

 By continuity equation: For steady flow there is no increase in the mass within the 

control volume(i.e., Mass entering per unit time = Mass leaving per unit time) 

 

 

 

 

Summary 
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 Assumptions of Bernoulli’s 
equation 
i. The fluid is ideal, i.e., viscosity is zero 

ii. The flow is steady 

iii. The flow is incompressible 

iv. The flow is irrotational 



Bernoulli’s Equation from Euler’s 
Equation 
 Bernoulli’s equation is obtained by integrating the Euler’s equation of 

motion( 
𝑑𝑝

𝜌
  +g 𝑑𝑧 + 𝑣𝑑𝑣 = 0) 

  
𝑑𝑝

𝜌
  +  g 𝑑𝑧 + 𝑣𝑑𝑣 = constant 

 In above equation ‘g’ is constant  and if flow is incompressible then 

𝜌 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

1

𝜌
  𝑑𝑝  + g  𝑑𝑧 + 𝑣𝑑𝑣 = constant 

 



 
𝑝

𝜌
  +g 𝑧 +

𝑣2

2
 = constant 

 
𝑝

𝜌𝑔
  + 𝑧 +

𝑣2

2𝑔
 = constant 

 
𝒑

𝝆𝒈
  +

𝒗𝟐

𝟐𝒈
 + 𝒛 = constant 

Above equation is known as Bernoull’s equation 

 

Bernoulli’s Equation from Euler’s 
Equation(Cont…) 



Where , 

𝑝

𝜌𝑔
 - Pressure energy per unit weight of fluid or pressure head 

𝑣2

2𝑔
 −Kinetic energy per unit weight or kinetic head 

Z- Potential energy per unit weight or potential head 

 Total head  = Pressure head + Kinetic head + Potential head       or  

  Total energy per unit weight = Pressure energy per unit weight + Kinetic 

energy per unit weight + Potential energy per unit weight  

Bernoulli’s Equation from Euler’s 
Equation(Cont…) 



Problem:1 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:3 



Problem:3(Cont…) 



Problem:3(Cont…) 



Problem:3(Cont…) 



Problem:4 



Problem:4(Cont…) 



Problem:4(Cont…) 



Problem:4(Cont…) 



 Bernoulli’s equation is obtained by integrating the Euler’s equation of motion 

  
𝑑𝑝

𝜌
  +  g 𝑑𝑧 + 𝑣𝑑𝑣 = constant 

 “
𝒑

𝝆𝒈
  +

𝒗𝟐

𝟐𝒈
 + 𝒛 = constant   is known as Bernoull’s equation 

 Total head ( total energy per unit weight) = Pressure head(Pressure energy per 

unit weight of fluid ) + Kinetic head(Kinetic energy per unit weight )+Potential 

head(Potential energy per unit weight ) 

 

Summary 
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Bernoulli’s Equation for Real Fluid 

 The Bernoulli’s equation was derived on the assumption that fluid is inviscid ( 

non-viscous) and therefore frictionless 

 But all the real fluids are viscous and hence offer resistance to flow 

   
𝒑𝟏

𝝆𝒈
 + 

𝑽𝟏
𝟐

𝟐𝒈
+ 𝒛𝟏=   

𝒑𝟐

𝝆𝒈
 + 

𝑽𝟐
𝟐

𝟐𝒈
+  𝒛𝟐 + 𝒉𝑳 

Where ℎ𝐿 is loss of energy between point 1 and 2 



Problem:1 



Problem:1(Cont…) 



Problem:1(Cont…) 



The Momentum Equation 
 It is based on the law of conservation of momentum or on the momentum principle, 

which states that the net force acting on a fluid mass is equal to the change in 

momentum of flow per unit time in that direction 

 The force acting on a fluid mass ‘m’ is given by the Newton’s second law of motion 

  F = m X a 

 Where “a” is the acceleration acting in the same direction as force F 

   But   a= 
𝒅𝒗

𝒅𝒕
  

 



 F = m 
𝒅𝒗

𝒅𝒕
 

       = 
𝒅(𝒎𝒗)

𝒅𝒕
    { m is constant and can be taken inside the differential } 

 F = 
𝒅(𝒎𝒗)

𝒅𝒕
  -------------(1) 

 Equation 1 is known as the momentum principle 

 Equation 1 can be written as  F.dt = d(mv) -----(2) 

 Equation 2 is known as the impulse- momentum equation and states that the impulse 

of a force F acting on a fluid of mass m in a short interval of time dt is equal to the 

change of momentum d(mv) in the direction of force 

The Momentum Equation(Cont…) 



Force Exerted by a Flowing Fluid on a  
Pipe Bend 
 The impulse- momentum equation(2) is used to determine the resultant force exerted 

by a flowing fluid on a pipe bend 



 Consider two sections (1) and (2) as shown in 

the fig 

Let  𝑉1= velocity of flow at section(1) 

𝑝1= pressure intensity at section (1) 

𝐴1= area of cross- section of pipe at section (1) 

and 

𝑉2, 𝑝2 , 𝐴2 = corresponding values of velocity , 

pressure and area at section(2) 

Force Exerted by a Flowing Fluid on a  
Pipe Bend(Cont…) 



 Let 𝐹𝑥  and 𝐹𝑦 be the components of the forces exerted by the flowing fluid 

on the bend in x and y – directions respectively 

 Then the force exerted by the bend on the fluid in the directions of x and y 

will be equal to 𝐹𝑥  and 𝐹𝑦  but in the opposite directions 

 Net force acting on fluid in the direction of x = Rate of change of momentum 

      in x –direction  

Force Exerted by a Flowing Fluid on a  
Pipe Bend(Cont…) 



𝑝1𝐴1 - 𝑝2𝐴2 cosθ - 𝐹𝑥 = ( mass per sec) ( change of velocity) 

      =𝜌𝑄( Final velocity in the direction of x 

– Initial velocity in the direction of x) 

  𝑝1𝐴1 - 𝑝2𝐴2 cosθ - 𝐹𝑥    = 𝜌𝑄(𝑉2 cosθ - 𝑉1) 

   𝐹𝑥 = 𝜌𝑄(𝑉1 - 𝑉2 cosθ) + 𝑝1𝐴1- 𝑝2𝐴2 cosθ 

Similarly the momentum equation in y-direction gives 

 0- 𝑝2𝐴2 𝑠𝑖𝑛θ - 𝐹𝑦 =  𝜌𝑄(𝑉2 sinθ -0) 

                𝐹𝑦 = 𝜌𝑄( −𝑉2  𝑠𝑖𝑛θ ) −𝑝2𝐴2 𝑠𝑖𝑛θ 

Force Exerted by a Flowing Fluid on a  
Pipe Bend(Cont…) 



 Now the resultant force(𝐹𝑅) acting on the bend 

  = 𝐹𝑥
2 + 𝐹𝑦

2 

 And the angle made by the resultant force with horizontal direction is given 

by 

   tan θ = 
𝐹𝑦

𝐹𝑥
 

Force Exerted by a Flowing Fluid on a  
Pipe Bend(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



 All the real fluids are viscous and hence offer resistance to flow 

  
𝒑𝟏

𝝆𝒈
 + 

𝒗𝟏
𝟐

𝟐𝒈
+  𝒛𝟏=   

𝒑𝟐

𝝆𝒈
 + 

𝒗𝟐
𝟐

𝟐𝒈
+  𝒛𝟐 + 𝒉𝑳 

 F.dt = d(mv)  is Known as impulse- momentum equation  

 The force exerted by the bend on the fluid in the directions of x and y will be 

 𝐹𝑥 = 𝜌𝑄(𝑉1 - 𝑉2 cosθ) + 𝑝1𝐴1- 𝑝2𝐴2 cosθ  

                 𝐹𝑦 = 𝜌𝑄( −𝑉2  𝑠𝑖𝑛θ ) −𝑝2𝐴2 𝑠𝑖𝑛θ 

Summary 
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Reynold’s Experiment  
 

 

 The Type of flow ( laminar or 

Turbulent) is determined by the 

Reynold’s number( 𝑅𝑒 = 
𝜌𝑉𝑑

𝜇
) 

 O. Reynold conducted an experiment 

in 1883 

 The water from the tank was 

allowed to flow through the glass 

tube 



Reynold’s Experiment( Cont…)  
 

 

 Velocity of flow was varied by the regulating valve 

 A liquid dye having same specific weight as water was introduced into 

the glass tube  

 It is observed that 

i) When the velocity of flow was low , 

then dye filament  is straight line and  

parallel to the glass tube. This type of 

flow is called ”Laminar Flow” 



Reynold’s experiment( Cont…)  
 

 
ii) With the increase of velocity of flow , the dye filament was no longer a 

straight-line and it becomes wavy in nature. This is called “ Transition “ 



Reynold’s experiment( Cont…)  
 

 
iii) With further increase of velocity of  flow,  the fluid particles of the dye 

moving in random fashion. This type of flow is called “Turbulent Flow” 

 For laminar flow the loss of 

pressure head is proportional to 

the velocity 

 For turbulent flow loss of pressure 

head is proportional to the square 

of velocity 



Reynold’s experiment( Cont…)  
 

 



Frictional loss in pipe flow 
 

 

 The viscous action which causes loss of energy in the pipe flow is called 
the frictional loss 

 The frictional resistance for turbulent flow is: 

i) Proportional to 𝑉𝑛, where n varies from 1.5 to 2.0 

ii) Proportional to the density of fluid 

iii) Proportional to the area of surface in cantact 

iv) Independent of pressure 

v) Dependent on the nature of the surface in contact 



Darcy-Weisbach equation  
 

 

Let 1-1 and 2-2 are two sections of pipe 

Let 𝑝1= pressure intensity at section 1-1 

𝑉1= velocity of flow at section 1-1 

 L=length of the pipe between         section 

1-1 and 2-2 

𝑑= diameter of pipe 

𝑓′= frictional resistance per unit wetted 

area per unit velocity 

 

 

 

 

 



Darcy- Weisbach equation( Cont…)  
 

 

𝑕𝑓= loss of head due to friction 

and 𝑝2, 𝑉2= are values of pressure intensity and velocity at section 2-2 

 Applying Bernoulli’s equation between sections 1-1 and 2-2 

 Total head at 1-1 = Total head at 2-2 + loss of head due to friction 

between 1-1 and 2-2 

 
𝑝1

𝜌𝑔
+ 

𝑉1
2

2𝑔
+ 𝑧1 = 

𝑝2

𝜌𝑔
+ 

𝑉2
2

2𝑔
+ 𝑧2 + 𝑕𝑓 

 

 

 

 

 



Darcy -Weisbach equation( Cont…)  
 

 

If  pipe is horizontal  then , 𝑧1= 𝑧2  

If diameter of pipe is same at 1-1 and 2-2 , then 𝑉1 = 𝑉2  

𝑝1

𝜌𝑔
= 

𝑝2

𝜌𝑔
+ 𝑕𝑓 

      𝑕𝑓= 
𝑝1

𝜌𝑔
− 

𝑝2

𝜌𝑔
------------(1) 

But 𝑕𝑓 is the head lost due to friction and hence intensity of pressure will 

be reduced in the direction of flow by frictional resistance   

 

 

 

 

 



Darcy -Weisbach equation( Cont…)  
 

 
 Now frictional resistance = frictional resistance per unit wetted area per 

unit velocity X wetted area X 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 

 Wetted area = 𝜋𝑑𝐿 

 Velocity  =V=𝑉1 = 𝑉2 

𝐹1 = 𝑓′𝑋 𝜋𝑑𝐿 𝑋 𝑉2  

 Perimeter = P =𝜋𝑑 

        𝐹1 = 𝑓′𝑋 𝑃𝑋𝐿 𝑋 𝑉2    

 

 

 

 

 



Darcy-Weisbach equation( Cont…)  
 

 
 The forces acting on the fluid between section 1-1 and 2-2 are: 

i) Pressure force at section 1-1 = 𝑝1X A 

Where A = Area of pipe 

ii) Pressure force at section 2-2 =𝑝2X A 

iii) Frictional force 𝐹1 

Resolving all forces in the horizontal direction , then 

𝑝1X A−𝑝2X A − 𝐹1 = 0 

 

 

 

 

 

 

 



Darcy- Weisbach equation( Cont…)  
 

 
(𝑝1 − 𝑝2)X A = 𝐹1 

 But 𝐹1 = 𝑓′𝑋 𝑃𝑋𝐿 𝑋 𝑉2   

(𝑝1 − 𝑝2) A= 𝑓′𝑋 𝑃𝑋𝐿 𝑋 𝑉2  

(𝑝1 − 𝑝2)= 
𝑓′𝑋 𝑃𝑋𝐿 𝑋 𝑉2 

𝐴
 

 But  from eq(1) 𝑕𝑓= 
𝑝1

𝜌𝑔
− 

𝑝2

𝜌𝑔
  

𝑝1 − 𝑝2= 𝑕𝑓 𝜌𝑔 

 

 

 

 

 

 

 



Darcy-Weisbach equation( Cont…)  
 

 

𝑕𝑓 𝜌𝑔= 
𝑓′𝑋 𝑃𝑋𝐿 𝑋 𝑉2 

𝐴
 

𝑕𝑓 = 
𝑓′𝑋 𝑃𝑋𝐿 𝑋 𝑉2 

𝜌𝑔𝐴
 

𝑕𝑓 = 
𝑓′

𝜌𝑔
X 
 𝑃

𝐴
XL X 𝑉2  

But P = wetted perimeter = 𝜋𝑑,  A = Area = 
𝜋

4
𝑑2 

𝑕𝑓 = 
𝑓′

𝜌𝑔
X 

𝜋𝑑 
𝜋

4
𝑑2

XL X 𝑉2  

 

 

 

 

 

 

 

 

 

 



Darcy-Weisbach equation( Cont…)  
 

 
𝑕𝑓 = 

𝑓′

𝜌𝑔
X 
4 
𝑑

XL X 𝑉2  

𝑕𝑓 = 
𝑓′

𝜌𝑔
X 
4L𝑉2 

𝑑
 

 Putting 
𝑓′

𝜌
= 
𝑓

2
, where 𝑓 is known as co-efficient of friction 

𝑕𝑓 = 
4𝑓
2𝑔

. 
L𝑉2 
𝑑

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Darcy-Weisbach equation( Cont…)  
 

 
𝑕𝑓 = 

4𝑓 𝐿 𝑉2 
𝑑𝑋2𝑔

-----------(2) 

 Equation (2) is known as ”Darcy-Weisbach equation”. This equation is 

commonly used for finding loss of head due to friction in pipes 

 Sometimes equation(2) is written as 

𝑕𝑓 = 
𝑓𝐿𝑉2 

𝑑𝑋2𝑔
 

 Then “f “is known as friction factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Expression for Co-efficient of 
Friction in Terms of Shear Stress  

  Force acting on a fluid between section 1-1 and 2-2 is given by  

(𝑝1 − 𝑝2)X A − 𝐹1 = 0 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

(𝑝1 − 𝑝2)X A= 𝐹1= force due to 

  shear stress 𝜏0 

= shear stress X surface area 

= 𝜏0X 𝜋𝑑 𝑋 𝐿 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



Expression for Co-efficient of Friction 
in Terms of Shear Stress(Cont…) 

 

 
 (𝑝1 − 𝑝2) 

𝜋

4
𝑑2= 𝜏0X 𝜋𝑑 𝑋 𝐿 

 (𝑝1 − 𝑝2) 
𝑑

4
= 𝜏0  𝐿 

 (𝑝1 − 𝑝2) = 
4𝜏0  𝐿

𝑑
 -----(I) 

But  𝑕𝑓= 
𝑝1

𝜌𝑔
− 

𝑝2

𝜌𝑔
  and  𝑕𝑓 = 

4𝑓 𝐿 𝑉2 

𝑑𝑋2𝑔
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



Expression for Co-efficient of Friction 
in Terms of Shear Stress(Cont…) 

 

 
 
𝑝1−𝑝2

𝜌𝑔
 = 
4𝑓 𝐿 𝑉2 
𝑑𝑋2𝑔

 

𝑝1 − 𝑝2 = 
4𝑓 𝐿 𝑉2 

𝑑𝑋2𝑔
 X 𝜌𝑔------(II) 

From eq(I), (𝑝1 − 𝑝2) = 
4𝜏0  𝐿

𝑑
 

substituting   (𝑝1 − 𝑝2) in eq(II) 

4𝜏0  𝐿

𝑑
 = = 

4𝑓 𝐿 𝑉2 

𝑑𝑋2𝑔
 X 𝜌𝑔 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



Expression for Co-efficient of Friction 
in Terms of Shear Stress(Cont…) 

 

 
4𝜏0  𝐿

𝑑
 = = 

4𝑓 𝐿 𝑉2 

𝑑𝑋2𝑔
 X 𝜌𝑔 

𝜏0 = 𝑓
𝜌𝑉2 

2
  

𝒇 =
𝟐𝝉𝟎

𝝆𝑽𝟐 
  

𝒇 − 𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝐟𝐫𝐢𝐜𝐭𝐢𝐨𝐧  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



Shear Stress in Turbulent Flow 
 

 

 The shear stress in viscous flow is given by Newton’s law of viscosity as 

𝝉𝒗 =  𝝁
𝒅𝒖

𝒅𝒚
 

Where 𝝉𝒗 = shear stress due to viscosity 

 Similarly to the expression for viscous shear,  for  turbulent flow 

𝝉𝒕 = η
𝑑𝒖 

𝑑𝑦
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



Shear Stress in Turbulent 
Flow(Cont…) 

 

 

 

Where 𝝉𝒕 = shear stress due to turbulence 

η = eddy visosity 

𝒖  =average velocity at a distance y from boundary 

η
𝜌

 is known as kinetic eddy viscosity( 𝜖) i.e  

𝝐= 
η
𝝆

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



Shear Stress in Turbulent 
Flow(Cont…) 

 

 
 

 If  the shear stress due to viscous flow is also considered, then total shear 

stress  becomes as: 

𝝉 =  𝝉𝒗 + 𝝉𝒕 

𝝉 =  𝝁
𝒅𝒖

𝒅𝒚
 + η

𝒅𝒖 

𝒅𝒚
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



 Laminar or Turbulent flow  is determined by the Reynolds experiment 

 Darcy-Weisbach equation  is commonly used for finding loss of head due to friction in 

pipes 

 Coefficient of friction is given by the  equaiton 𝒇 =
𝟐𝝉𝟎

𝝆𝑽𝟐 
  

 Turbulent shear stress is given by the expression 𝝉𝒕 = η
𝒅𝒖 

𝒅𝒚
 

 Total shear stress is given by the expression 𝝉 =  𝝁
𝒅𝒖

𝒅𝒚
 + η

𝒅𝒖 

𝒅𝒚
 

Summary 
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Loss of Energy in Pipes 
 

 
 When a fluid is flowing through a pipe, the fluid experiences some 

resistance, due to which some of energy of fluid is lost 

 This loss of energy is classified as follows: 

 

 

Energy Losses 

Major Energy 
Losses 

Minor Energy 
Losses 



Major Energy Losses 
 

 
 This is due to friction and it is calculated by the following  formulae: 

a) Darcy-Weisbach Formula 

b) Chezy’s Formula 



Major Energy Losses(Cont…) 
 

 
a) Darcy-Weisbach Formula: 

The loss of head (or energy) in pipes due to friction is calculated from Darcy-

Weisbach equation as: 

𝒉𝒇 = 
4𝒇𝑳𝑽𝟐 

𝒅𝑿𝟐𝒈
 

Where 𝒉𝒇= loss of head due to friction 

 𝒇= co-efficient of friction which is a function of Reynolds number 

 

 

 

 



Major Energy Losses(Cont…) 
 

 
𝒇=

16

𝑅𝑒
 for 𝑅𝑒< 2000(viscous flow) 

𝒇=
0.079

𝑅𝑒
1/4 for 𝑅𝑒 varying from 4000 to 106 

L= Length of pipe 

V= mean velocity of flow 

d= diameter of pipe 

 

 

 



Major Energy Losses(Cont…) 
 

 
b) Chezy’s formula for loss of head due to friction in pipes: 

Another expression for loss of head due to friction is given as: 

ℎ𝑓 = 
𝑓′

𝜌𝑔
X 

 𝑃

𝐴
XL X 𝑉2 -------(1) 

Where ℎ𝑓= loss of head due to friction 

P = wetted perimeter of pipe 

A= area of cross- section of pipe 

 

 

 

 



Major Energy Losses(Cont…) 
 

 
L= length of the pipe 

V= mean velocity of flow 

 Now the ratio of  
𝐴

𝑃
 ( = 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑓𝑙𝑜𝑤

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑤𝑒𝑡𝑡𝑒𝑑)
)  is called hydraulic mean depth or 

hydraulic radius and is denoted by m 

Hydraulic mean depth, m = 
𝐴

𝑃
=   

𝜋

4
𝒅𝟐

𝜋𝑑
= 

𝑑

4
 

 



Major Energy Losses(Cont…) 
 

 
Substituting  

𝐴

𝑃
 = m or 

𝑃

𝐴
= 

1

𝑚
 in equation(1) 

ℎ𝑓 = 
𝑓′

𝜌𝑔
X L X 𝑉2 X 

1

𝑚
  

𝑉2 = ℎ𝑓 X  
𝜌𝑔

𝑓′  X m X 
1

𝐿
  

𝑉2 =  
𝜌𝑔

𝑓′  X m X 
𝑕𝑓

𝐿
  

 

 

 

 

 

 



Major Energy Losses(Cont…) 
 

 

V= 
𝜌𝑔

𝑓′  X m X 
𝑕𝑓

𝐿
   

V= 
𝜌𝑔

𝑓′    m 
𝑕𝑓

𝐿
   

Let 
𝜌𝑔

𝑓′  = C,  
𝑕𝑓

𝐿
 =i 

 Where C is a constant known as Chezy’s constant and i is loss of head per 

unit length of pipe  

 

 

 

 



Major Energy Losses(Cont…) 
 

 

V= C  m 𝒊-------(2) 

 Equation (2) is known as Chezy’s formula 

 Thus the loss of head due to friction in pipe from Chezy’s formula can be 

obtained if the velocity of flow through pipe and also the value of C is 

known 

 The value of m for pipe is always equal to d/4 

 

 

 

 

 



Problem:1 
 

 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



 Loss of energy in pipe flow is divided into major and minor energy losses 

Major energy losses is due to friction only and it is given by the  Darcy-

Weisbach Formula and Chezy’s Formula 

 Darcy- Weisbach formula for loss of head due to friction in pipes is given 

by 𝒉𝒇 = 
4𝒇𝑳𝑽𝟐 

𝒅𝑿𝟐𝒈
 

 Chezy’s formula for loss of head due to friction in pipes is given by V= C 

 m 𝒊 

Summary 
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Minor Energy Losses 

 

 
 The loss of energy due to change of velocity of the flowing fluid in 

magnitude or direction is called minor energy losses 

 The minor loss of energy (or head) includes the following cases: 



Minor Energy Losses(Cont…) 

 

 

Loss of head due to sudden enlargement 

Loss of head due to sudden contraction 

Loss of head at the entrance of a pipe 

Loss of head at the exit of a pipe 

Loss of head due to an obstruction in a pipe 

Loss of head due to bend in the pipe 

Loss of head in various pipe fittings 



Minor Energy Losses(Cont…) 

 

 
 In case of long pipe the minor energy losses are small compared to major 

energy losses and they can be neglected without serious error 

 But in case of a short pipe, these losses are comparable with the major 

losses 



Loss of Head due to Sudden 
Enlargement(ℎ𝑒) 

 

  Consider a liquid flowing 

through a pipe which has 

sudden enlargement as shown 

in the fig 

 Consider two sections 1-1 and 

2-2 before and after the 

enlargement 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

  Let 𝑝1= pressure intensity at section 1-1 

             𝑉1= velocity of flow at section 1-1 

             𝐴1= area of pipe at section 1-1 

            𝑝2, 𝑉1 𝑎𝑛𝑑 𝐴2= corresponding values at section 2-2 

 Due to sudden change of diameter  of  the pipe from 𝐷1 to 𝐷2, the  liquid 

flowing from the smaller pipe is not able to follow the abrupt change of 

the boundary 

 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

  The flow separates from the 

boundary and turbulent eddies 

are formed 

 The loss of head (or energy) 

takes place due to the formation 

of these eddies 

turbulent eddies  



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

  Let 𝑝′= pressure intensity of the liquid 

eddies on the area(𝐴2- 𝐴1) 

          ℎ𝑒 = loss of head due to sudden 

enlargement 

 Applying Bernoulli’s equation at 

section 1-1 and 2-2 

 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

 𝑝1

𝜌𝑔
+ 

𝑉1
2

2𝑔
+ 𝑧1 = 

𝑝2

𝜌𝑔
+ 

𝑉2
2

2𝑔
+ 𝑧2 +loss of head due to sudden enlargement 

But 𝑧1 = 𝑧2 as pipe is horizontal 

𝑝1

𝜌𝑔
+ 

𝑉1
2

2𝑔
= 

𝑝2

𝜌𝑔
+ 

𝑉2
2

2𝑔
+ ℎ𝑒 

ℎ𝑒 =
𝑝1

𝜌𝑔
−

𝑝2

𝜌𝑔
+

𝑉1
2

2𝑔
−

𝑉2
2

2𝑔
----------(1) 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

  Considering the control volume of liquid between sections 1-1 and 2-2 

 The force acting on the liquid in the control volume in the direction of 

flow is given by: 

 𝐹𝑥 = 𝑝1𝐴1+ 𝑝′(𝐴2 − 𝐴1) − 𝑝2𝐴2 

But experimentally it is found that  𝑝′= 𝑝1 

               𝐹𝑥 = 𝑝1𝐴1+ 𝑝1(𝐴2 − 𝐴1) − 𝑝2𝐴2 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

 𝐹𝑥 = 𝑝1𝐴2 − 𝑝2𝐴2 

𝐹𝑥 = (𝑝1 − 𝑝2)𝐴2 

Momentum of liquid/sec at section 1-1 = mass flow rate X velocity 

    =𝜌 𝐴1 𝑉1X 𝑉1 

    = 𝜌 𝐴1𝑉1
2 

Similarly,  Momentum of liquid/sec at section 2-2 = 𝜌 𝐴2𝑉2
2 

 

 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

 Change of  Momentum of liquid/sec  = 𝜌 𝐴2𝑉2
2 − 𝜌 𝐴1𝑉1

2 

But from continuity equation, 𝐴1𝑉1 = 𝐴2𝑉2 

    𝐴1 =
𝐴2𝑉2

𝑉1
 

Change of  Momentum of liquid/sec = 𝜌 𝐴2𝑉2
2 − 𝜌

𝐴2𝑉2

𝑉1
𝑉1

2 

         = 𝜌 𝐴2 𝑉2
2 − 𝑉1𝑉2  

 

 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

 Now net force acting on the control volume in the direction of  flow must be 

equal to the rate of change of momentum 

   (𝑝1 − 𝑝2)𝐴2= 𝜌 𝐴2 𝑉2
2 − 𝑉1𝑉2  

(𝑝1 −  𝑝2)

𝜌
= 𝑉2

2 − 𝑉1𝑉2 

Dividing by g on both sides, 
(𝑝1− 𝑝2)

𝜌𝑔
 = 

𝑉2
2−𝑉1𝑉2

𝑔
 

 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

 
 
𝑝1

𝜌𝑔
−

𝑝2

𝜌𝑔
= 

𝑉2
2−𝑉1𝑉2

𝑔
----------(2) 

Substituting eq(2) in eq(1) 

ℎ𝑒 =
𝑝1

𝜌𝑔
−

𝑝2

𝜌𝑔
+

𝑉1
2

2𝑔
−

𝑉2
2

2𝑔
−−−−−−−−−−(1)  

ℎ𝑒 =
𝑉2

2 − 𝑉1𝑉2

𝑔
+

𝑉1
2

2𝑔
−

𝑉2
2

2𝑔
 

 

 



Loss of Head due to Sudden 
Enlargement(Cont…) 

 

 

ℎ𝑒 =
𝑉2

2 − 𝑉1𝑉2

𝑔
+

𝑉1
2

2𝑔
−

𝑉2
2

2𝑔
 

=
𝑉2

2 + 𝑉1
2 − 2𝑉1𝑉2

2𝑔
 

Loss of head due to sudden enlargement 𝒉𝒆 = 
𝑽𝟏−𝑽𝟐

𝟐

𝟐𝒈
 



Problem:1 
 

 



Problem:1(Cont…) 
 

 



Problem:2 
 

 



Problem:2(Cont…) 
 

 



Problem:2(Cont…) 
 

 



Problem:2(Cont…) 
 

 



Problem:2(Cont…) 
 

 



Problem:3 
 

 



Problem:3(Cont…) 
 

 



Problem:3(Cont…) 
 

 



Problem:3(Cont…) 
 

 



 The loss of energy due to change of velocity of the flowing fluid in magnitude or 

direction is called minor energy losses 

 For long pipe the minor energy losses neglected 

 For short pipe,  minor  losses are comparable with the major losses 

 Due to sudden change of pipe diameter from smaller to larger diameter, the 

smaller pipe is not able to follow the abrupt change of the boundary , thus 

turbulent eddies are formed 

 The loss of head (or energy) takes place due to the formation of eddies 

Summary 
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Loss of Head due to Sudden 
Contraction 

 

  Consider a liquid flowing in a pipe 

which has a sudden contraction in 

area as shown in the fig 

 As liquid flows from large pipe to 

smaller pipe, the area of flow goes on 

decreasing and becomes minimum at 

section C-C 

 



Loss of Head due to Sudden 
Contraction(Cont…) 

 

  The section C-C is called Vena-contracta 

 After section C-C , a sudden  enlargement of the area takes place 

 The loss of head due to sudden contraction is actually due to sudden 

enlargement form Vena-contracta to smaller pipe 

Let 𝐴𝑐 = Area of flow at section C-C 

      𝑉𝑐 = Velocity of flow at section C-C 

     𝐴2 = Area of flow at section 2-2 

 

 



Loss of Head due to Sudden 
Contraction(Cont…) 

 

      𝑉2 = Velocity of flow at section 2-2 

     ℎ𝑐 = Loss of head due to sudden contraction 

Now ℎ𝑐= actual loss of head due to sudden enlargement from section C-C to 

section 2-2 and given as: 

But we know Loss of head due to sudden enlargement 𝒉𝒆 =  
𝑽𝟏 − 𝑽𝟐

𝟐

𝟐𝒈
 

 

 



Loss of Head due to Sudden 
Contraction(Cont…) 

 

 
𝒉𝒄 =  

𝑽𝒄 − 𝑽𝟐
𝟐

𝟐𝒈
 

=
𝟏

𝟐𝒈
𝑽𝟐

𝑽𝒄

𝑽𝟐
− 𝟏

𝟐
  

=
𝑽𝟐

𝟐

𝟐𝒈

𝑽𝒄

𝑽𝟐
− 𝟏

𝟐
-------(1) 

From continuity equation,  𝑨𝒄 𝑽𝒄 = 𝑨𝟐 𝑽𝟐   ⟹
𝑽𝒄

𝑽𝟐
= 

𝑨𝟐

𝑨𝒄
 

 

 



Loss of Head due to Sudden 
Contraction(Cont…) 

 

     
𝑽𝒄

𝑽𝟐
=

1
𝑨𝒄

𝑨𝟐
 

 

    
𝑽𝒄

𝑽𝟐
= 

𝟏

𝑪𝒄
                    Let 𝑨𝒄 𝑨𝟐

 = 𝑪𝒄 

Substituting 
𝑽𝒄

𝑽𝟐
 in equation (1) 

𝒉𝒄 =
𝑽𝟐

𝟐

𝟐𝒈

𝑽𝒄

𝑽𝟐
− 𝟏

𝟐

−−−(𝟏)  

 

 



Loss of Head due to Sudden 
Contraction(Cont…) 

 

          𝒉𝒄 =
𝑽𝟐

𝟐

𝟐𝒈

𝟏

𝑪𝒄
− 𝟏

𝟐
 

Let  k=  
𝟏

𝑪𝒄
− 𝟏

𝟐
 

Loss of head due to sudden contraction 𝒉𝒄 =
𝑽𝟐

𝟐

𝟐𝒈
𝒌 

If the value of 𝑪𝒄= 0.62 ,          k=  
𝟏

𝟎.𝟔𝟐
− 𝟏

𝟐
=0.375 

 

 



Loss of Head due to Sudden 
Contraction(Cont…) 

 

     𝒉𝒄=
𝑽𝟐

𝟐

𝟐𝒈
𝒌 

𝒉𝒄=0.375
𝑽𝟐

𝟐

𝟐𝒈
 

If the 𝑪𝒄 is not given then head loss due to contraction is taken as: 

𝒉𝒄=0.5
𝑽𝟐

𝟐

𝟐𝒈
 

 

 

 

 



Problem:1 
 

 



Problem:1(Cont…) 
 

 



Problem:1(Cont…) 
 

 



Problem:1(Cont…) 
 

 



Problem:1(Cont…) 
 

 



 The loss of head due to sudden contraction is actually due to sudden 

enlargement form Vena-contracta to smaller pipe 

 Loss of head due to sudden contraction is given by the expression as 

𝒉𝒄 =
𝑽𝟐

𝟐

𝟐𝒈
𝒌 

 

Summary 
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Loss of Head at the Entrance of Pipe 
 

 
 This is loss of energy which occurs when a liquid enters a pipe which is 

connected to a large tank or reservoir 

 This loss is similar to the loss of head due to sudden contraction 

 This loss depends on the form of entrance  

 For sharp entrance, this loss is slightly more than a rounded or bell 

mounted entrance 

 

 



Loss of Head at the Entrance of 
Pipe(Cont…) 

 

 



 

 
 In practice the value of loss of head at the entrance with sharp cornered  

is taken as 0.5
𝑽𝟐

𝟐

𝟐𝒈
 

 Where V = velocity of liquid in pipe 

 Thus, loss of head at the entrance of pipe 𝒉𝒊 = 𝟎. 𝟓
𝑽𝟐

𝟐

𝟐𝒈
 

 

Loss of Head at the Entrance of 
Pipe(Cont…) 



 

 
 This head loss due to the velocity of liquid at the outlet of pipe which is 

dissipated either in the form of a free jet( if outlet of the pipe is free) or it 

is lost in the tank or reservoir  

 This loss is equal to 
𝑽𝟐

𝟐𝒈
  , where V= velocity of liquid at the outlet of pipe 

Thus,  loss of head at the exit of pipe 𝒉𝒐 = 
𝑽𝟐

𝟐

𝟐𝒈
 

Loss of Head at the Exit of Pipe 



 

 

Loss of Head at the Exit of Pipe(Cont…) 



 

 

Loss of Head at the Exit of Pipe(Cont…) 



 

 

 There is sudden enlargement of 

the area of the flow beyond the 

obstruction  

 Due to this loss of head takes 

place 

Loss of Head due to an Obstruction in 
a Pipe 
 Here loss of head (or energy) takes place due to reduction of area of the 

cross section of the pipe where the obstruction present 



 

 Let a = Maximum area of obstruction  

  A=  Area of pipe,V= Velocity of liquid in pipe 

 (A-a)= Area of flow of liquid at section 1-1 

 As the liquid flows and passes through section 1-1, a vena-contracta is 

formed beyond section 1-1 

 After which the stream of liquid widens again and velocity of flow at 

section 2-2 becomes uniform and equal to the velocity , V in the pipe 

 

Loss of Head due to an Obstruction in 
a Pipe(Cont…) 



 

 
 This is similar to the flow of liquid through sudden enlargement 

 Let 𝑉𝑐 =Velocity of liquid at vena- contracta 

 Thus loss of head due to an obstruction =loss of head due to enlargement 

from vena-contracta to section 2-2 

 Loss of head due to sudden enlargement 𝒉𝒆 =  
𝑽𝟏−𝑽𝟐

𝟐

𝟐𝒈
 

    = 
𝑽𝒄−𝑽 𝟐

𝟐𝒈
-----------(1) 

Loss of Head due to an Obstruction in 
a Pipe(Cont…) 



 

 
 From continuity equation,  𝑎𝑐𝑋 𝑉𝑐 = 𝐴𝑋V ------------(2) 

 Let 𝐶𝑐= coefficient of  contractin 

𝐶𝑐=
𝑎𝑟𝑒𝑎 𝑎𝑡 𝑣𝑒𝑛𝑎 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑎

𝐴−𝑎
=

𝑎𝑐

𝐴−𝑎
 

 𝑎𝑐= 𝐶𝑐X(𝐴 − 𝑎) 

Substituting 𝑎𝑐 in equatin(2) 

𝐶𝑐X(𝐴 − 𝑎)𝑉𝑐 = 𝐴𝑋V 

Loss of Head due to an Obstruction in 
a Pipe(Cont…) 



 

 
𝑉𝑐 =

𝐴V

𝐶𝑐(𝐴 − 𝑎) 
 

Substituting 𝑉𝑐 in equation (1) 

 
𝑽𝒄 − 𝑽 𝟐

𝟐𝒈
−−−−−−−−−−−(1)  

= 

AV
𝐶𝑐(𝐴−𝑎) 

−𝑽

𝟐

𝟐𝒈
 

 

Loss of Head due to an Obstruction in 
a Pipe(Cont…) 



 

 
Loss of head due to an obstruction = 

𝑽𝟐

𝟐𝒈
(

𝑨

𝐶𝑐(𝐴−𝑎)
− 𝟏)𝟐 

 

Loss of Head due to an Obstruction in 
a Pipe(Cont…) 



 

 

Problem:1 



 

 

Problem:1(Cont…) 



  The Loss of Head at the Entrance of Pipe is  similar to the loss of head due to 

sudden contraction 

 Loss of head at the entrance of pipe is  𝒉𝒊 = 𝟎. 𝟓
𝑽𝟐

𝟐

𝟐𝒈
 

 Loss of head at the exit of pipe is  𝒉𝒐 = 
𝑽𝟐

𝟐

𝟐𝒈
 

 Loss of head due to an obstruction = 
𝑽𝟐

𝟐𝒈
(

𝑨

𝐶𝑐(𝐴−𝑎)
− 𝟏)𝟐 

 

Summary 
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 When there is any bend in a pipe, the velocity of flow changes, due to 

which the separation of flow from the boundary and also formation of 

eddies takes place 

Loss of head in pipe due to bend is: 𝒉𝒃 = 
𝒌𝑽𝟐

𝟐𝒈
 

Where V= velocity of flow, k= co-efficient of bend 

The value of k depends on (i) Angle of bend (ii) Radius of curvature of bend 

(iii) Diameter of pipe 

 

Loss of Head due to Bend in Pipe 



 

 
 The loss of head in various pipe fittings such as valves, couplings etc., is 

equal to 
𝒌𝑽𝟐

𝟐𝒈
 

Where V= velocity of flow 

 k= co-efficient of pipe fitting 

 

Loss of Head In Various Pipe Fittings 



 

 

Problem:1 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:2 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 The Loss of head in pipe due to bend is: 𝒉𝒃 = 
𝒌𝑽𝟐

𝟐𝒈
 

 The loss of head in various pipe fittings is: 
𝒌𝑽𝟐

𝟐𝒈
 

Summary 
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  It is defined as the line which gives the sum of pressure head (
𝑝

𝑤
) and 

datum head(𝑧) of a flowing fluid in a pipe with respect to some reference 

line which is obtained by joining the top of  all vertical ordinates, showing 

the pressure head (
𝑝

𝑤
)  of  a flowing fluid in a pipe from the centre of the 

pipe 

 

Hydraulic Gradient Line(H.G.L) 



 

 

Hydraulic Gradient Line(H.G.L)(Cont…) 



 

 

Hydraulic Gradient Line(H.G.L)(Cont…) 



 

 
 It is defined as the line which gives the sum of pressure head, datum head 

and kinetic head of a flowing fluid in a pipe with respect to some 

reference line 

   or 

 It is defined as the line which is obtained by joining the tops of all vertical 

ordinates showing the sum of  pressure head and kinetic head from the 

centre of the pipe 

 

 

Total Energy Line(T.E.L) 



 

 

Total Energy Line(T.E.L)(Cont…) 



 

 

Total Energy Line(T.E.L)(Cont…) 



 

 

Problem:1 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:2 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 Hydraulic Gradient Line is sum of pressure head (
𝑝

𝑤
) and datum head(𝑧) 

 Total Energy Line is sum of pressure head, datum head and kinetic head 

Summary 
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  Pipes in series or compound pipes are defined as the pipe of different 

lengths and different diameters connected end to end( in series) to form a 

pipe line as shown in fig 

 

 

Flow through Pipes in series or Flow 
through Compound Pipes 

 Let 𝐿1 , 𝐿2 , 𝐿3 = length of 

pipes 1,2 and 3 respectively 

  𝑑1, 𝑑2, 𝑑3 = diamter of pipes 

1,2 and 3 respectively 

 



 

 

Flow through Pipes in series or Flow 
through Compound Pipes(Cont…) 
 𝑉1, 𝑉2, 𝑉3 =velocity of flow through pipes 1,2 and 3 respectively 

  𝑓1, 𝑓2, 𝑓3 = coefficient of frictions for pipes 1,2 and 3 respectively 

H= difference of water level in the two tanks 

The discharge passing through each pipe is same 

 Q= 𝐴1𝑉1 = 𝐴2𝑉2 = 𝐴3𝑉3 

 



 

 

Flow through Pipes in series or Flow 
through Compound Pipes(Cont…) 
  The difference in liquid surface levels is equal to sum of the total head 

loss in the pipes  

 H= 0.5
𝑽𝟏

𝟐

𝟐𝒈
+ 

4𝒇𝟏𝑳𝟏𝑽𝟏
𝟐 

𝒅𝟏𝑿𝟐𝒈
+ 0.5

𝑽𝟐
𝟐

𝟐𝒈
+

4𝒇𝟐𝑳𝟐𝑽𝟐
𝟐 

𝒅𝟐𝑿𝟐𝒈
+ 

𝑽𝟐−𝑽𝟑
𝟐

𝟐𝒈
+

4𝒇𝟑𝑳𝟑𝑽𝟑
𝟐 

𝒅𝟑𝑿𝟐𝒈
+

𝑽𝟑
𝟐

𝟐𝒈
 

 If the minor losses are neglected, then the  equation becomes as 

H= 
4𝒇𝟏𝑳𝟏𝑽𝟏

𝟐 

𝒅𝟏𝑿𝟐𝒈
+

4𝒇𝟐𝑳𝟐𝑽𝟐
𝟐 

𝒅𝟐𝑿𝟐𝒈
+

4𝒇𝟑𝑳𝟑𝑽𝟑
𝟐 

𝒅𝟑𝑿𝟐𝒈
 

 



 

 

Flow through Pipes in series or Flow 
through Compound Pipes(Cont…) 
 If the coefficient  of friction is same for all pipes, i.e 𝒇𝟏=𝒇𝟐 = 𝒇𝟑 = 𝒇 

H= 
4𝒇𝑳𝟏𝑽𝟏

𝟐 

𝒅𝟏𝑿𝟐𝒈
+

4𝒇𝑳𝟐𝑽𝟐
𝟐 

𝒅𝟐𝑿𝟐𝒈
+

4𝒇𝑳𝟑𝑽𝟑
𝟐 

𝒅𝟑𝑿𝟐𝒈
 

H= 
4𝒇

𝟐𝒈
 

𝑳𝟏𝑽𝟏
𝟐 

𝒅𝟏
+

𝑳𝟐𝑽𝟐
𝟐 

𝒅𝟐
+

𝑳𝟑𝑽𝟑
𝟐 

𝒅𝟑
 

 



 

 

Problem:1 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 Consider a main pipe which divides into two or more branches as 
shown in fig and again join together at downstream to form a single 
pipe, then the branch pipes are said to be connected in parallel 

 The discharge through the main pipe is increased by connecting pipes in 
parallel 

Flow through Parallel Pipes 



 The rate of flow in main pipe is equal to the sum of rate of flow through 
branch pipes 

𝑄 = 𝑄1 + 𝑄2 

 The loss of head for each branch pipe is same 

Loss of head for  branch pipe 1= Loss of head for  branch pipe 2 

4𝒇𝟏𝑳𝟏𝑽𝟏
𝟐 

𝒅𝟏𝑿𝟐𝒈
=

4𝒇𝟐𝑳𝟐𝑽𝟐
𝟐 

𝒅𝟐𝑿𝟐𝒈
 

 If 𝒇𝟏 = 𝒇𝟐 

𝑳𝟏𝑽𝟏
𝟐 

𝒅𝟏𝑿𝟐𝒈
=

𝑳𝟐𝑽𝟐
𝟐 

𝒅𝟐𝑿 𝟐𝒈
 

Flow through Parallel Pipes(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



 The discharge passing through each pipe is same in case of pipes in series 

is Q= 𝐴1𝑉1 = 𝐴2𝑉2 = 𝐴3𝑉3 and coefficient  of friction is same for all pipes 

 The difference in liquid surface levels in case of  pipes in series is  

 H= 0.5
𝑽𝟏

𝟐

𝟐𝒈
+ 

4𝒇𝟏𝑳𝟏𝑽𝟏
𝟐 

𝒅𝟏𝑿𝟐𝒈
+ 0.5

𝑽𝟐
𝟐

𝟐𝒈
+

4𝒇𝟐𝑳𝟐𝑽𝟐
𝟐 

𝒅𝟐𝑿𝟐𝒈
+ 

𝑽𝟐−𝑽𝟑
𝟐

𝟐𝒈
+

4𝒇𝟑𝑳𝟑𝑽𝟑
𝟐 

𝒅𝟑𝑿𝟐𝒈
+

𝑽𝟑
𝟐

𝟐𝒈
 

 The rate of flow in main pipe in case of parallel pipes is 𝑄 = 𝑄1 + 𝑄2 and  

loss of head for each branch pipe is same 

Summary 
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  Bernoulli’s equation is applied in all problems of incompressible fluid 

flow where energy considerations are involved 

 

 

Practical Applications of Bernoulli’s 
Equation 

Venturimeter 

Orifice meter 

Pitot-tube 

 We shall consider its 

application to the 

following measuring 

devices like: 

 

 



 

  It is used for measuring the rate of flow of a fluid flowing through a pipe 

 It consist of  (i) A short converging part (ii) Throat and (iii) Diverging 

part 

Expression for rate of flow through venturimeter 

 Consider a venturimeter fitted in a horizontal pipe through which a fluid 

is flowing(say water) 

Venturimeter 



 

 

 Let 𝑑1 = diameter at inlet or at section (1) 

  𝑝1 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1  

 𝑣1 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑎𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1  

𝑎 = 𝑎𝑟𝑒𝑎 𝑎𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛(1)=
𝜋

4
𝑑2 

Venturimeter(Cont…) 

𝑑2, 𝑝2, 𝑣2, 𝑎2 are corresponding values at 

section (2) 



 

 

 Applying Bernoulli’s equation at section(1) and (2) 

𝑝1

𝜌𝑔
+  

𝑣1
2

2𝑔
+ 𝑧1 = 

𝑝2

𝜌𝑔
+ 

𝑣2
2

2𝑔
+ 𝑧2  

As pipe is horizontal, hence 𝑧1 = 𝑧2 

𝑝1

𝜌𝑔
+  

𝑣1
2

2𝑔
 = 

𝑝2

𝜌𝑔
+ 

𝑣2
2

2𝑔
 

𝑝1−𝑝2

𝜌𝑔
= 

𝑣2
2

2𝑔
− 

𝑣1
2

2𝑔
 

 

 

 

Venturimeter(Cont…) 



 

 
𝑝1−𝑝2

𝜌𝑔
= 

𝑣2
2

2𝑔
− 

𝑣1
2

2𝑔
 

 But 
𝑝1−𝑝2

𝜌𝑔
= 𝑕= difference of pressure heads at section 1 and 2 

h= 
𝑣2

2

2𝑔
− 

𝑣1
2

2𝑔
-----------(1) 

 Now applying continuity equation at sections 1 and 2 

𝑎1 𝑣1 = 𝑎2 𝑣2,         𝑣1 =
𝑎2 𝑣2

𝑎1
 

  

 

 

 

Venturimeter(Cont…) 



 

 𝑣1 =
𝑎2 𝑣2

𝑎1
 

 Substituting 𝑣1 in equation( h= 
𝑣2

2

2𝑔
− 

𝑣1
2

2𝑔
-----------(1)) 

h= 
𝑣2

2

2𝑔
− 

(
𝑎2 𝑣2

𝑎1
)2

2𝑔
 

h= 
𝑣2

2

2𝑔
1 −

𝑎2
2

𝑎1
2 = 

𝑣2
2

2𝑔

𝑎1
2−𝑎2

2

𝑎1
2  

 

 

  

 

 

 

Venturimeter(Cont…) 



 

 
h= 

𝑣2
2

2𝑔

𝑎1
2−𝑎2

2

𝑎1
2  

𝑣2 = 2𝑔𝑕
𝑎1

2

𝑎1
2 − 𝑎2

2
 

𝑣2 =
𝑎1

𝑎1
2 − 𝑎2

2
2𝑔𝑕 

 

 

  

 

 

 

Venturimeter(Cont…) 



 

 

Discharge Q=𝑎2𝑣2 

Q=𝑎2
𝑎1

𝑎1
2−𝑎2

2
2𝑔𝑕 

Q=
𝑎1𝑎2

𝑎1
2−𝑎2

2
2𝑔𝑕------------(2) 

 Equation (2) gives discharge under ideal conditions and is called, 

theoretical discharge 

 

 

  

 

 

 

Venturimeter(Cont…) 



 

 

 Actual discharge will be less than  theoretical discharge 

Q=𝐶𝑑
𝑎1𝑎2

𝑎1
2−𝑎2

2
2𝑔𝑕 

 Where 𝐶𝑑 = coefficient of venturimeter and its value less than 1 

 

 

 

  

 

 

 

Venturimeter(Cont…) 



 

 

Value of ‘h’ given by differential U-tube manometer 

Case I: Differential manometer contains a liquid which is heavier than the 

liquid flowing through the pipe 

Let 𝑆ℎ = Sp. gravity of the heavier liquid 

       𝑆𝑜 = Sp. gravity of the liquid flowing through pipe 

       x = Difference of the heavier liquid column in U-tube 

 

 

 

  

 

 

 

Venturimeter(Cont…) 



 

 

  h=x
𝑆ℎ

𝑆𝑜
− 1  

Case II: If the differential manometer contains a liquid which is lighter than 

the liquid flowing through the pipe, the value of h is given by 

h=x 1 −
𝑆𝑙

𝑆𝑜
 

Where 𝑆𝑙= Sp. gravity of lighter liquid in U-tube  

𝑆𝑜 = Sp. gravity of the liquid flowing through pipe 

x= Difference of lighter liquid column in U-tube 

 

 

 

  

 

 

 

Venturimeter(Cont…) 



 

 
Case III. Inclined venturimeter with differential manometer: Let the 

differential manometer contains heavier liquid ,then h is given by  

h= 
𝑝1

𝜌𝑔
+ 𝑧1 − 

𝑝2

𝜌𝑔
+ 𝑧2 = x

𝑆ℎ

𝑆𝑜
− 1  

Case IV: For inclined venturimeter in which differential manometer 

contains a liquid which is lighter than the liquid flowing through the pipe  

h= 
𝑝1

𝜌𝑔
+ 𝑧1 − 

𝑝2

𝜌𝑔
+ 𝑧2 = x 1 −

𝑆𝑙

𝑆𝑜
 

 

 

  

 

 

 

Venturimeter(Cont…) 



 

 

Problem:1 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:2 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 Bernoulli’s equation is applied in all problems of incompressible fluid flow where 

energy considerations are involved 

 Venturimeter is used for measuring the rate of flow of a fluid flowing through a 

pipe 

 Theoretical discharge for venturimeter is : Q=
𝑎1𝑎2

𝑎1
2−𝑎2

2
2𝑔𝑕 

 Actual discharge will be less than  theoretical discharge: Q=𝐶𝑑
𝑎1𝑎2

𝑎1
2−𝑎2

2
2𝑔𝑕 

 

Summary 
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  It is used for measuring the rate of  flow of a fluid through a pipe 

 It is a cheaper device as compared to venturimeter 

 It also works on the same principle as that of venturimeter 

 It consists of a flat circular plate which has a circular sharp edged hole 

called orifice, which is concentric with the pipe 

 The orifice diameter is generally  0.5 times the diameter of the pipe, it 

may vary from 0.4 to 0.8 times the pipe diameter 

 

 

 

Orifice Meter or Orifice Plate 



 

 

Orifice Meter or Orifice Plate(Cont…) 



 

 

 A differential manometer is connected 

at section (1), which is at a distance of 

about 1.5 to 2.0 times the pipe 

diameter upstream from the orifice 

plate 

 At section (2) which is at distance of  

about half the diameter of the orifice on 

the downstream side from orifice plate 

 

 

Orifice Meter or Orifice Plate(Cont…) 



 

 

 Let 𝑝1 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1  

𝑣1 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1  

𝑎1 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑎𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (1) 

𝑝2, 𝑣2, 𝑎2 are corresponding values at section (2) 

Applying Bernoulli’s equation at section (1) and (2), we get 

𝑝1

𝜌𝑔
+  

𝑣1
2

2𝑔
+ 𝑧1 = 

𝑝2

𝜌𝑔
+ 

𝑣2
2

2𝑔
+ 𝑧2  

 

 

 

Orifice Meter or Orifice Plate(Cont…) 



 

 
𝑝1

𝜌𝑔
+ 𝑧1 −

𝑝2

𝜌𝑔
+ 𝑧2  = 

𝑣2
2

2𝑔
−

𝑣1
2

2𝑔
 

But 
𝑝1

𝜌𝑔
+ 𝑧1 −

𝑝2

𝜌𝑔
+ 𝑧2 = 𝑕 = Differential head 

𝑕 = 
𝑣2

2

2𝑔
−

𝑣1
2

2𝑔
 

               2gh=𝑣2
2 − 𝑣1

2 

𝑣2 = 2𝑔𝑕 + 𝑣1
2---------(1) 

Orifice Meter or Orifice Plate(Cont…) 



 

 

 Now section (2) is at the vena- contracta and 𝑎2 represents area at vena –

contracta and 𝑎0 is the area of orifice, then 

𝐶𝑐 =
𝑎2

𝑎0
 

𝐶𝑐=  Coefficient of contraction 

𝑎2 = 𝑎0 𝐶𝑐 

By continuity equation 

𝑎1𝑣1 = 𝑎2𝑣2 

Orifice Meter or Orifice Plate(Cont…) 



 

 

𝑣1 =
𝑎2

𝑎1
𝑣2 =

𝑎0 𝐶𝑐

𝑎1
𝑣2 

Substituting 𝑣1 in equation (𝑣2 = 2𝑔𝑕 + 𝑣1
2---------(1)) 

𝑣2 = 2𝑔𝑕 +
𝑎0 𝐶𝑐

𝑎1
𝑣2

2

 

𝑣2
2 = 2𝑔𝑕 +

𝑎0 

𝑎1

2

𝐶𝑐
2𝑣2

2 

 

Orifice Meter or Orifice Plate(Cont…) 



 

 
𝑣2

2 = 2𝑔𝑕 +
𝑎0 

𝑎1

2

𝐶𝑐
2𝑣2

2 

𝑣2
2 1 −

𝑎0 
𝑎1

2
𝐶𝑐

2 = 2𝑔𝑕 

𝑣2 =
2𝑔𝑕 

1 −
𝑎0 
𝑎1

2

𝐶𝑐
2

 

Orifice Meter or Orifice Plate(Cont…) 



 

 
The  discharge Q = 𝑣2𝑎2 = 𝑣2𝑎0𝐶𝑐 

𝑄 =
𝑎0𝐶𝑐 2𝑔ℎ 

1−
𝑎0 
𝑎1

2
𝐶𝑐

2
-------------(2) 

The above expression is simplified by using 

 

Orifice Meter or Orifice Plate(Cont…) 



 

 𝐶𝑑 = 𝐶𝑐

1 −
𝑎0 
𝑎1

2

1 −
𝑎0 
𝑎1

2

𝐶𝑐
2

 

𝐶𝑐 = 𝐶𝑑

1 −
𝑎0 
𝑎1

2

𝐶𝑐
2

1 −
𝑎0 
𝑎1

2

 

Orifice Meter or Orifice Plate(Cont…) 



 

 

 

Substituting  this value of 𝐶𝑐 in equation (𝑄 =
𝑎0𝐶𝑐 2𝑔ℎ 

1−
𝑎0 
𝑎1

2
𝐶𝑐

2
-------------(2)) 

 

𝑄 = 𝑎0𝐶𝑑

1 −
𝑎0 
𝑎1

2

𝐶𝑐
2

1 −
𝑎0 
𝑎1

2

𝑋
2𝑔𝑕 

1 −
𝑎0 
𝑎1

2

𝐶𝑐
2

 

 

Orifice Meter or Orifice Plate(Cont…) 



 

 

 

𝑄 =
𝑎0𝐶𝑑 2𝑔𝑕 

1 −
𝑎0 
𝑎1

2

 

     

𝑄 =
𝐶𝑑𝑎0𝑎1 2𝑔𝑕 

𝑎1
2 − 𝑎0

2
 

 Where 𝐶𝑑= Co – efficient of discharge for orifice meter 

 The co-efficient of discharge for orifice meter is much smaller than that 
for a venturimeter 

Orifice Meter or Orifice Plate(Cont…) 



 

 

Problem:1 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:2 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 Orifice meter also works on the same principle as that of venturimeter 

 The  discharge 𝑄 =
𝑎0𝐶𝑐 2𝑔ℎ 

1−
𝑎0 
𝑎1

2
𝐶𝑐

2
 

 The discharge can also be expressed as 𝑄 =
𝐶𝑑𝑎0𝑎1 2𝑔ℎ 

𝑎1
2−𝑎0

2
 

 The co-efficient of discharge for orifice meter is much smaller than that for a 

venturimeter 

Summary 



 PITOT- TUBE 

Presented By: 

Shaik Nayeem 
Assistant Professor 
Mechanical Engineering 
GIET(A) Lecture Details: 

Unit-III ( Closed Conduit Flow) , Pitot -tube 
FM & HM /Mechanical,  I -Semester. 



Fluid Mechanics & Hydraulic Machinery

FLUID STATICS

FLUID KINEMATICS

FLUID DYNAMICS

CLOSED CONDUIT FLOW

BOUNDARY LAYER THEORY AND APPLICATIONS

BASICS OF TURBO MACHINERY

HYDRAULIC TURBINES

PERFORMANCE OF HYDRAULIC TURBINES

CENTRIFUGAL PUMPS

RECIPROCATING PUMPS

PITOT- TUBE 



Contents 

•Pitot- tube 

•Summary 



 

  It is used for measuring the velocity of flow at any point in a pipe or a 

channel 

 It is based on the principle that , if the velocity of flow at a point becomes 

zero, the pressure there is increased due to the conversion of the kinetic 

energy into pressure energy 

 Pitot –tube consists of a glass tube, bent at right angles 

 

 

 

 

Pitot- tube 



 The lower end, which is bent through 900 is 

directed in the upstream direction 

 The liquid rises up in the tube due to the 

conversion of kinetic energy into pressure energy 

 The velocity is determined by measuring the rise 

of liquid in the tube 

 Point (2) is just as the inlet of the pitot tube 

 Point (1) is far away from the tube 

Pitot- tube (Cont…) 



 Let 𝑝1 =intensity of pressure at point (1) 

𝑣1 =velocity of flow at point (1) 

𝑝2 = pressure at point (2) 

𝑣2 =velocity of flow at point (2), which is zero 

h= rise of liquid in the tube above the free surface 

Applying Bernoulli’s equation at section (1) and (2), we get 

𝑝1

𝜌𝑔
+  

𝑣1
2

2𝑔
+ 𝑧1 = 

𝑝2

𝜌𝑔
+  

𝑣2
2

2𝑔
+ 𝑧2  

 
 

Pitot- tube (Cont…) 



But 𝑧1 = 𝑧2 and 𝑣2 = 0 

𝑝1

𝜌𝑔
=pressure head at (1)= H 

𝑝2

𝜌𝑔
=pressure head at (2)= h + H 

Substituting these values in 
𝑝1

𝜌𝑔
+  

𝑣1
2

2𝑔
+ 𝑧1 = 

𝑝2

𝜌𝑔
+  

𝑣2
2

2𝑔
+ 𝑧2 , we get 

H+ 
𝑣1

2

2𝑔
 = (h+H) 

 

 

 

Pitot- tube (Cont…) 



h=  
𝑣1

2

2𝑔
  

𝑣1 =  2𝑔ℎ 

 This is theoretical velocity. Actual velocity is given by 

(𝑣1)𝑎𝑐𝑡= 𝐶𝑣 2𝑔ℎ 

 𝐶𝑣 =Co-efficient of pitot –tube 

 Velocity at any point 𝑣 = 𝐶𝑣 2𝑔ℎ 

 

 

 

Pitot- tube (Cont…) 



Velocity  of flow in a pipe by pitot-tube:  

 For finding the velocity at any point in a 

pipe by pitot-tube, the following 

arrangements are adopted: 

1) Pitot- tube along with a vertical 

piezometer tube  

 

 

 

Pitot- tube (Cont…) 



2) Pitot- tube connected with 

piezometer tube  

 

 

 

Pitot- tube (Cont…) 

3) Pitot- tube and vertical piezometer 

tube connected with a differential U-

tube manometer  

 

 

 



4) Pitot- static tube, which consist of two circular concentric tubes one inside 

and other with some annular space in between 

 

Pitot- tube (Cont…) 

 The outlet of these two tubes are connected to 

the differential manometer where the difference 

of pressure head ‘h’ is measured by knowing the 

difference of the levels of the manometer liquid 

say x. Then ℎ = 𝑥
𝑆𝑔

𝑆0
− 1  

 



Problem:1 



Problem:1(Cont…) 



Problem:2 



Problem:2 



 Pitot –tube  is used for measuring the velocity of flow at any point in a pipe or a 

channel 

 Theoretical velocity: 𝑣1 =  2𝑔ℎ 

 Actual velocity: (𝑣1)𝑎𝑐𝑡= 𝐶𝑣 2𝑔ℎ 

Summary 



 FLOW THROUGH NOZZLES 

Presented By: 

Shaik Nayeem 
Assistant Professor 
Mechanical Engineering 
GIET(A) Lecture Details: 

Unit-III ( Closed Conduit Flow) , Flow through nozzles 
FM & HM /Mechanical,  I -Semester. 



Fluid Mechanics & Hydraulic Machinery

FLUID STATICS

FLUID KINEMATICS

FLUID DYNAMICS

CLOSED CONDUIT FLOW

BOUNDARY LAYER THEORY AND APPLICATIONS

BASICS OF TURBO MACHINERY

HYDRAULIC TURBINES

PERFORMANCE OF HYDRAULIC TURBINES

CENTRIFUGAL PUMPS

RECIPROCATING PUMPS

 FLOW THROUGH 
NOZZLES 



Contents 

•Flow through Nozzles 

•Summary 



 

 

 The total energy at the end 

of the pipe consists of 

pressure energy and kinetic 

energy 

 By fitting the nozzle at the 

end of the pipe, the pressure 

energy is converted into 

kinetic energy 

 

 

 

Flow through Nozzles 



 

 

 Thus nozzles are used, where higher velocities of flow are required 

 Let  D= diameter of the pipe,  L= length of the pipe 

A= area of the pipe=
𝜋

4
𝐷2  ,  V= velocity of flow in pipe 

H= total head at the inlet of the pipe , 

 d= diameter of nozzle at outlet, v= velocity of flow at outlet of nozzle,   

 a= area of the nozzle at outlet=
𝜋

4
𝑑2, 𝑓 =co-efficient of friction for pipe 

 

 

 

Flow through Nozzles(Cont…) 



 

  Loss of head due to friction in pipe, 𝑕𝑓 =
4𝑓𝐿𝑉2

2𝑔𝑋𝐷
 

 Head available at the end of the pipe or at the base of nozzle 

 = Head at inlet of pipe −head lost due to friction 

 =H −𝑕𝑓= 𝐻 −
4𝑓𝐿𝑉2

2𝑔𝑋𝐷
 

 Neglecting minor losses and also assuming losses in the nozzle negligible 

    

 

 

 

Flow through Nozzles(Cont…) 



 

 

 Total head at inlet of pipe= total head(energy) at the outlet of nozzle + 

Losses  

 But total head at outlet of nozzle = kinetic head =
𝑣2

2𝑔
 

H= 
𝑣2

2𝑔
+ 𝑕𝑓 =

𝑣2

2𝑔
+

4𝑓𝐿𝑉2

2𝑔𝐷
--------(1) 

 From continuity equation in the pipe and outlet of nozzle 

                                 AV=av,  V=
𝑎𝑣

𝐴
 

 

    

 

 

 

Flow through Nozzles(Cont…) 



 

 
 Substituting V in equation  H=

𝑣2

2𝑔
+

4𝑓𝐿𝑉2

2𝑔𝐷
--------(1) 

H=
𝑣2

2𝑔
+

4𝑓𝐿

2𝑔𝐷
X

𝑎𝑣

𝐴

2
 

H=
𝑣2

2𝑔
+

4𝑓𝐿𝑎2𝑣2

2𝑔𝐷𝐴2
 

H=
𝑣2

2𝑔
1 +

4𝑓𝐿𝑎2

𝐷𝐴2
 

 

 

Flow through Nozzles(Cont…) 



 

 
𝑣 =

2𝑔𝐻

1 +
4𝑓𝐿𝑎2

𝐷𝐴2

 

Discharge through nozzle= a 𝑣 

Q= a 
2𝑔𝐻

1+
4𝑓𝐿𝑎2

𝐷𝐴2

 

 

Flow through Nozzles(Cont…) 



 

 

Problem:1 



 

 

Problem:1(Cont…) 



 By fitting the nozzle at the end of the pipe, the total energy is converted into 

kinetic energy 

 Discharge through nozzle: = a 
2𝑔𝐻

1+
4𝑓𝐿𝑎2

𝐷𝐴2

 

 

Summary 
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 When a real fluid flows past a solid body or a solid wall 

 The fluid particles  adhere to the boundary and condition of no slip 

occurs 

 

Introduction to Boundary Layer Flow 

 This means that the velocity of 

fluid close to the boundary will be 

same as that of the boundary 

 



 

  If the boundary is stationary, the 

velocity of fluid at the boundary will 

be zero 

 Farther away from the boundary, the 

velocity will be higher and as a result 

of this variation of velocity i.e the 

velocity gradient 
𝑑𝑢

𝑑𝑦
 will exist 

Introduction to Boundary Layer 
Flow(Cont…) 



 

  The velocity of fluid increases from 

zero velocity on the stationary 

boundary to free-stream velocity 

(U) of the fluid in the direction 

normal to the boundary  

 

 

 

Introduction to Boundary Layer 
Flow(Cont…) 



 

 
 This variation of velocity from zero to free-stream velocity in the direction 

normal to the boundary takes place in a narrow region in the vicinity of 

solid boundary 

 

Introduction to Boundary Layer 
Flow(Cont…) 

 This narrow region of the fluid is called 

boundary layer 

 The theory dealing with boundary layer flows is 

called boundary layer theory 

 

 

 



 

  According to boundary layer theory , the flow of fluid may be divided into 

two regions 

(1) A very thin layer of the fluid, called the boundary layer, in the immediate 

neighbourhood of the solid boundary, in this region 
𝑑𝑢

𝑑𝑦
  exists and hence 

the fluid exerts a shear stress on the wall in the direction of motion   

The value of shear stress is given by 𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 

 

Introduction to Boundary Layer 
Flow(Cont…) 



 

 (2) The velocity outside the boundary layer is constant and equal to free- 

stream velocity. As there is no variation of velocity in this region , the 

velocity gradient 
𝑑𝑢

𝑑𝑦
  becomes zero  

 

 

Introduction to Boundary Layer 
Flow(Cont…) 



 

 
 Consider a fluid flow over a smooth thin 

plate which is flat and placed parallel to 

the direction of  free stream of fluid 

 A velocity gradient is set up in the fluid 

near the surface of the plate 

 This velocity gradient develops shear 

resistance, which retards the fluid motion 

 

 

 

Laminar Boundary Layer 



 

 

 Thus the fluid with a uniform free stream 

velocity(U) is retarded in the vicinity of the 

solid surface of the plate and boundary 

layer region begins at the sharp leading 

edge 

 In the downstream the leading edge, the 

boundary layer region increases because 

the retarded fluid is further retarded 

Laminar Boundary Layer(Cont…) 



 

  This is also referred as growth of boundary 

layer 

 Near the leading edge of the surface of the 

plate, where the thickness is small, the flow 

in the boundary layer is laminar , so this 

layer of fluid is said to be laminar boundary 

layer(AE) 

Laminar Boundary Layer(Cont…) 



 

  The distance of B from leading edge ( Laminar zone =AB) is obtained 

from Reynold number( (𝑅𝑒)𝑥 =
𝑈𝑥

𝑣
 ) = 5X 105 for the plate 

Where 𝑥= Distance from leading edge 

U= Free- stream velocity of fluid 

𝑣 =Kinematic viscosity of fluid 

Laminar Boundary Layer(Cont…) 



 

  If length of the plate is more than the distance 𝑥((𝑅𝑒)𝑥 =
𝑈𝑥

𝑣
 ) = 5X 105), 

the thickness of boundary layer will go on increasing in the downstream 

direction 

 Then laminar boundary layer becomes unstable and motion of fluid 

within it, is disturbed and irregular which leads to a transition from 

laminar to turbulent boundary layer 

Turbulent Boundary Layer 



 

 

 This short length which the boundary 

layer flow changes from laminar to 

turbulent is called transition zone( BC) 

 Further downstream the transition zone, 

the boundary layer is turbulent and 

continues to grow in thickness 

 This layer of boundary is called turbulent 

boundary layer(FG) 

 

Turbulent Boundary Layer(Cont…) 



 

 

 It is adjacent to the solid surface of 

the plate  

 The velocity variation is influenced 

only by viscous effects 

 

 

Laminar Sub-layer 



 

 

 Velocity distribution would be parabolic curve , but in view of the very 

small thickness we will assume velocity variation is linear and velocity 

gradient can be considered constant 

 So, shear stress would be constant and equal to the boundary shear stress 

𝜏0 = 𝜇
𝜕𝑢

𝜕𝑦 𝑦=0
= 𝜇

𝑢

𝑦
           𝐹𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 ,

𝜕𝑢

𝜕𝑦
=

𝑢

𝑦
 

 

Laminar Sub-layer(Cont…) 



 If the boundary is stationary, the velocity of fluid at the boundary will be zero 

 The velocity of fluid increases from zero velocity on the stationary boundary to 

free-stream velocity (U) of the fluid in the direction normal to the boundary  

 The theory dealing with boundary layer flows is called boundary layer theory 

 Near the leading edge the thickness is small, the flow in the boundary layer is 

laminar , so this layer of fluid is said to be laminar boundary layer 

 For Laminar sub-layer 𝜏0 = 𝜇
𝑢

𝑦
  

Summary 
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 Distance from boundary of the solid body measured in the y- direction to 

the point, where the velocity of the fluid is approximately equal to 0.99 

times the free stream velocity(U) of the fluid 

 𝛿𝑙𝑎𝑚 =Thickness of laminar boundary layer 

 𝛿𝑡𝑢𝑟 =Thickness of turbulent boundary layer 

 𝛿′ =Thickness of laminar sub-layer 

 

 

 

Boundary Layer Thickness(𝜹) 



 

 

 It is the distance measured perpendicular to the boundary of the solid 

body, by which the boundary should be displaced to compensate for the 

reduction in flow rate on account of boundary layer formation 

Or 

 The distance perpendicular to the boundary, by which the free-stream is 

displaced due to the formation of boundary layer 

Displacement Thickness(𝜹∗) 



 

 

 Consider a smooth plate and a section 1-1 at a distance 𝑥 from the leading 

edge  

Displacement Thickness(𝜹∗)(Cont…) 

 Velocity of the fluid at B is 

zero 

 At C, which is lies on the 

boundary layer is U 

 Thus velocity varies from zero 

at B to U 



 

 

 Distance BC =𝛿 

 At section 1-1, consider an elemental strip 

 Let     y= distance of elemental strip from the plate 

dy = thickness of the elemental strip 

u= velocity of fluid at the elemental strip 

b= width of plate 

Then area of elemental strip, dA=bX dy 

Displacement Thickness(𝜹∗)(Cont…) 



 

 

Mass of fluid per second flowing through elemental strip 

    = 𝜌𝑋 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑋 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑖𝑝 

    = 𝜌𝑢X dA = 𝜌𝑢bdy-------(1) 

 If there had been no plate, then the fluid would have been flowing with a 

constant velocity equal to free-stream velocity(U) at the section 1-1 

Then mass of fluid per second flowing through elemental strip = 𝜌 X Velocity 

X Area= 𝜌 X U X b X dy------(2) 

 

 

 

Displacement Thickness(𝜹∗)(Cont…) 



 

 

 As 𝑈 > 𝑢, due to presence of plate, formation of the boundary layer takes 

place, there will be a reduction in mass flowing per second through the 

elemental strip 

The reduction in mass/sec flowing through elemental strip = mass/sec given  

by equation(2) − mass/sec given  by equation(1) 

= 𝜌Ubdy − 𝜌 𝑢bdy 

= 𝜌b(U-u)dy 

 

 

 

 

Displacement Thickness(𝜹∗)(Cont…) 



 

  Total reduction in mass of fluid/sec flowing through BC due to plate 

=  𝜌𝑏 𝑈 − 𝑢 𝑑𝑦
𝛿

0
 

 If fluid is incompressible i.e 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

= 𝜌𝑏  𝑈 − 𝑢 𝑑𝑦
𝛿

0
--------(3) 

 

 

 

Displacement Thickness(𝜹∗)(Cont…) 



 

 

 Let the plate is displaced by a distance 𝛿∗ and velocity of flow for the 

distance  𝛿∗ is equal to the free –stream velocity(i.e U) 

 Loss of the mass of the fluid/sec flowing through the distance 𝛿∗ =

 ρ𝑋 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑋 𝐴𝑟𝑒𝑎  

= ρ𝑋 𝑈 𝑋 (𝛿∗𝑋𝑏)-------(4) 

Equating equation (3) and (4) *𝜌𝑏  𝑈 − 𝑢 𝑑𝑦
𝛿

0
--------(3)} 

𝜌𝑏  𝑈 − 𝑢 𝑑𝑦
𝛿

0
= ρ 𝑈  𝛿∗𝑏 

 

 

 

 

Displacement Thickness(𝜹∗)(Cont…) 



 

 
 𝑈 − 𝑢 𝑑𝑦
𝛿

0
=  𝑈  𝛿∗ 

𝛿∗ =
1

𝑈
 𝑈 − 𝑢 𝑑𝑦
𝛿

0

 

U is constant , therefore 

𝛿∗ =  
𝑈−𝑢 𝑑𝑦

𝑈

𝛿

0
  

𝜹∗ =  (𝟏 −
𝒖

𝑼
)𝒅𝒚

𝜹

𝟎
  

 

 

 

 

Displacement Thickness(𝜹∗)(Cont…) 



 

 

 Defined as the distance, measured perpendicular to the boundary of the 

solid body, by which the boundary should be displaced to compensate for 

the reduction in momentum of the flowing fluid on account of boundary 

layer formulation 

From equation (1) 𝜌𝑢X dA = 𝜌𝑢bdy−−−−−−−(1)  

Momentum of fluid flowing through elemental strip per second= Mass flow 

rate X Velocity = 𝜌𝑢bdyXu 

 

 

Momentum Thickness(𝜽) 



 

 

Momentum of fluid in the absence of boundary layer  = 𝜌𝑢bdyXU 

Loss of momentum through elemental strip = 𝜌𝑢bdyXU- 𝜌𝑢bdyXu 

= 𝜌b u(U- u)dy 

Total loss of momentum/sec though BC=  𝜌b u(U− u)dy 
𝛿

0
------(5) 

 Let 𝜃 =distance by which plate is displace when the fluid is flowing with a 

constant velocity U 

Momentum Thickness(𝜽)(𝑪𝒐𝒏𝒕… ) 



 

 

 Loss of momentum/sec of fluid flowing through distance  𝜃 with a velocity 

U =Mass of fluid through 𝜃 X Velocity 

           = (ρ𝑋𝑎𝑟𝑒𝑎 𝑋 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) X Velocity 

          = (ρ𝑋𝜃𝑋𝑏𝑋 𝑈) X U       𝐴𝑟𝑒𝑎 = 𝜃𝑋𝑏  

          = ρ𝜃𝑏𝑈2 -----------(6) 

 Equating equation (5) and (6) 

ρ𝜃𝑏𝑈2 =  𝜌b u(U− u)dy 
𝛿

0
  

 

 

 

 

 

Momentum Thickness(𝜽)(Cont…) 



 

 

 If the fluid is assumed incompressible flow  

ρ𝜃𝑏𝑈2 = 𝜌b u(U− u)dy 
𝛿

0
  

𝜃𝑈2 =  u(U− u)dy 
𝛿

0
  

𝜃 =
1

𝑈2
  u(U− u)dy 
𝛿

0
=  

u(U− u)dy
𝑈2

𝛿

0
 

𝜽 =  
𝒖

𝑼
(1−

𝒖

𝑼
 )dy 

𝜹

𝟎
 

 

 

 

 

Momentum Thickness(𝜽)(Cont…) 



 

 
 Defined as the distance measured perpendicular to the boundary of the 

solid body, by which the boundary should be displaced to compensate for 

the reduction in kinetic energy of the flowing fluid on account of 

boundary layer formation 

 We know that mass of fluid per second flowing through elemental strip 

(m)=𝜌𝑢𝑏𝑑𝑦 

 Kinetic energy of this fluid =
1

2
𝑚 𝑋 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 =

1

2
𝜌𝑢𝑏𝑑𝑦 𝑋 𝑢2 

 

 

 

Energy Thickness(𝜹∗∗) 



 

 
 Kinetic energy of this fluid in the absence of boundary layer 

=
1

2
𝜌𝑢𝑏𝑑𝑦 𝑈2 

 Loss of K.E through elemental strip= 
1

2
𝜌𝑢𝑏𝑑𝑦 𝑈2 −

1

2
𝜌𝑢𝑏𝑑𝑦 𝑋 𝑢2 

= 
1

2
𝜌𝑢𝑏 𝑈2 − 𝑢2 𝑑𝑦 

 Total loss of K.E of fluid passing through BC=  
1

2
𝜌𝑢𝑏 𝑈2 − 𝑢2 𝑑𝑦 

𝛿

0
 

 

 

 

 

Energy Thickness(𝜹∗∗)(Cont…) 



 

 
 If the fluid is incompressible 

=
1

2
𝜌𝑏 𝑢 𝑈2 − 𝑢2 𝑑𝑦 

𝛿

0

 

 Let 𝜹∗∗ = distance by which the plate is displaced to compensate for the 

reduction in K.E  

 Loss of K.E through 𝜹∗∗ of fluid flowing with velocity U= 

1

2
 𝑚𝑎𝑠𝑠 𝑋 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 

 

 

 

 

Energy Thickness(𝜹∗∗)(Cont…) 



 

 
= 
1

2
𝜌 𝑋 𝑎𝑟𝑒𝑎𝑋 𝑣𝑒𝑜𝑙𝑜𝑐𝑖𝑡𝑦 𝑋𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 

 = 
1

2
𝜌 𝑋 𝑏𝑋𝛿∗∗ 𝑋𝑈 𝑋𝑈2  𝐴𝑟𝑒𝑎 = 𝑏𝑋𝛿∗∗  

= 
1

2
 𝜌 𝑏 𝛿∗∗ 𝑈3 

 Equating the two losses of K.E , we get 

1

2
 𝜌 𝑏 𝛿∗∗ 𝑈3 =

1

2
𝜌𝑏  𝑢 𝑈2 − 𝑢2 𝑑𝑦 

𝛿

0
 

 

 

 

 

Energy Thickness(𝜹∗∗)(Cont…) 



 

 
𝛿∗∗ 𝑈3 =  𝑢 𝑈2 − 𝑢2 𝑑𝑦 

𝛿

0
 

𝛿∗∗ =
1

𝑈3
 𝑢 𝑈2 − 𝑢2 𝑑𝑦 
𝛿

0

 

𝛿∗∗ =  
𝑢

𝑈
1 −

𝑢2

𝑈2
𝑑𝑦 

𝛿

0

 

 

 

Energy Thickness(𝜹∗∗)(Cont…) 



 Boundary Layer Thickness is distance from solid body  in the y- direction to the 

point, where the velocity of the fluid is approximately equal to 0.99 times the free 

stream velocity(U) of the fluid 

 Displacement Thickness( 𝜹∗) 𝒊𝒔 𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒆𝒅 𝒂𝒔  (𝟏 −
𝒖

𝑼
)𝒅𝒚

𝜹

𝟎
  

 Momentum Thickness(𝜽) 𝒊𝒔 𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒆𝒅 𝒂𝒔   
𝒖

𝑼
(1−

𝒖

𝑼
 )dy 

𝜹

𝟎
 

 Energy Thickness(𝛿∗∗) 𝒊𝒔 𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒆𝒅 𝒂𝒔 =  
𝑢

𝑈
1 −

𝑢2

𝑈2
𝑑𝑦 

𝛿

0
 

 

Summary 
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Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:1(Cont…) 



 

 

Problem:2 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Problem:2(Cont…) 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer 
 In fluid dynamics, drag ( fluid resistance, another 

type of friction or fluid friction) is a force acting 

opposite to the relative motion of any object 

moving with respect to a surrounding fluid 

 The drag force on the plate can be determined if 

the velocity profile near the plate is known 

 Consider a small length ∆𝑥 of the plate at a 

distance of 𝑥 from the leading edge  



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
The shear stress 𝜏0 = 𝜇

𝑑𝑢

𝑑𝑦 𝑦=0
, where 

𝑑𝑢

𝑑𝑦 𝑦=0
 is the velocity distribution 

near the plate at y=0 

Then drag force or shear force on a small distance ∆𝑥  is  

∆𝐹𝐷 = shear stress X area 

   = 𝜏0𝑋∆𝑥𝑋𝑏  

𝑇𝑎𝑘𝑖𝑛𝑔 𝑤𝑖𝑑𝑡𝑕 𝑜𝑓 𝑝𝑙𝑎𝑡𝑒 = 𝑏  

Where ∆𝐹𝐷 = drag force on distance ∆𝑥 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
The  drag force must also be equal to 

the rate of change of momentum over 

the distance ∆𝑥  

Let ABCD is the control volume of the 

fluid over the distance ∆𝑥  

The edge DC represents the outer edge 

of the boundary layer 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
Let u= velocity at any point within the boundary 

layer 

b= width of plate 

The mass flow rate entering through the side AD 

= 𝜌𝑋 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑋 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 𝑜𝑓 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑑𝑦
𝛿

0
 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 

=  𝜌𝑋 𝑢𝑋𝑏𝑋 𝑑𝑦 =  𝜌𝑢𝑏𝑑𝑦          
𝛿

0

𝛿

0

 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 = 𝑏𝑋 𝑑𝑦  

Mass flow rate leaving the side BC= mass flow rate 

through AD + 
𝜕

𝜕𝑥
𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑡𝑕𝑟𝑜𝑢𝑔𝑕 𝐴𝐷 𝑋 ∆𝑥 

=  𝜌𝑢𝑏𝑑𝑦 +
𝜕

𝜕𝑥

𝛿

0

 𝜌𝑢𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
 From continuity equation for a steady incompressible fluid flow  

 Mass flow  rate entering AD+ Mass flow rate entering DC = Mass flow rate 

leaving BC 

 Mass flow rate entering DC = Mass flow rate 

through BC – Mass flow rate through AD 

=  𝜌𝑢𝑏𝑑𝑦 +
𝜕

𝜕𝑥

𝛿

0

 𝜌𝑢𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 −  𝜌𝑢𝑏𝑑𝑦
𝛿

0

 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 

=  𝜌𝑢𝑏𝑑𝑦 +
𝜕

𝜕𝑥

𝛿

0

 𝜌𝑢𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 −  𝜌𝑢𝑏𝑑𝑦
𝛿

0

 

=
𝜕

𝜕𝑥
 𝜌𝑢𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 

 The fluid is entering through side DC with a uniform velocity U 

 Now let us calculate momentum flux through control volume 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
Momentum flux entering  through AD  

= 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥 𝑡𝑕𝑟𝑜𝑢𝑔𝑕 𝑠𝑡𝑟𝑖𝑝 𝑜𝑓 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑑𝑦
𝛿

0
 

= 𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑡𝑕𝑟𝑜𝑢𝑔𝑕 𝑠𝑡𝑟𝑖𝑝 𝑋 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝛿

0
 

= 𝜌𝑢𝑏𝑑𝑦 𝑋 𝑢 =
𝛿

0
  𝜌
𝛿

0
𝑢2𝑏𝑑𝑦 

Momentum flux leaving the side BC = (𝜌
𝛿

0
𝑢𝑏𝑑𝑦)𝑢 +

𝜕

𝜕𝑥
 𝜌𝑢𝑏𝑑𝑦 𝑢
𝛿

0
𝑋∆𝑥 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 

=  𝜌
𝛿

0

𝑢2𝑏𝑑𝑦 +
𝜕

𝜕𝑥
 𝜌𝑢2𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 

Momentum flux entering the side DC = mass flow rate through DC X velocity 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑈 𝑎𝑛𝑑 𝑖𝑡 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑙𝑢𝑒  

=
𝜕

𝜕𝑥
 𝜌𝑢𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥𝑋𝑈 

=
𝜕

𝜕𝑥
 𝜌𝑢𝑈𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 

 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
 Rate of change of momentum of the control volume= Momentum flux 

through BC- Momentum flux through AD – Momentum flux through DC 

=  𝜌
𝛿

0

𝑢2𝑏𝑑𝑦 +
𝜕

𝜕𝑥
 𝜌𝑢2𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 −  𝜌
𝛿

0

𝑢2𝑏𝑑𝑦 −
𝜕

𝜕𝑥
 𝜌𝑢𝑈𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 

=
𝜕

𝜕𝑥
 𝜌𝑢2𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 −
𝜕

𝜕𝑥
 𝜌𝑢𝑈𝑏𝑑𝑦
𝛿

0

𝑋∆𝑥 

 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 

=
𝜕

𝜕𝑥
 𝜌𝑢2𝑏𝑑𝑦
𝛿

0

− 𝜌𝑢𝑈𝑏𝑑𝑦
𝛿

0

∆𝑥 

𝐹𝑜𝑟 𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑙𝑢𝑖𝑑 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

=
𝜕

𝜕𝑥
𝜌𝑏 (𝑢2

𝛿

0

− 𝑢𝑈)𝑑𝑦 ∆𝑥 

= 𝜌𝑏
𝜕

𝜕𝑥
 (𝑢2
𝛿

0
− 𝑢𝑈)𝑑𝑦 ∆𝑥-------(1) 

 

 

 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
 Now the rate of change of momentum on the control volume ABCD must be 

equal to the total force on the control volume in the same direction 

according to the momentum principle 

 

 

 

 But for  a flat plate 
𝜕𝑝

𝜕𝑥
= 0, which means there is no 

external pressure force on the control volume 

 Also the force on the side DC is negligible as the velocity is 

constant and velocity gradient is zero approximately 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
 The only external force acting on the control volume is the 

shear force acting on the side AB in the direction from B to A 

∆𝐹𝐷 = 𝜏0𝑋 ∆x X b 

The external force in the direction of rate of change of 

momentum= −𝜏0𝑋 ∆x X b-----(2) 

 According to momentum principle,  equating equation (1) 

and (2) 

 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 

−𝜏0𝑋 ∆x X b = 𝜌𝑏
𝜕

𝜕𝑥
 (𝑢2
𝛿

0
− 𝑢𝑈)𝑑𝑦 ∆𝑥 

−𝜏0= 𝜌
𝜕

𝜕𝑥
 (𝑢2
𝛿

0
− 𝑢𝑈)𝑑𝑦  

𝜏0 = −𝜌
𝜕

𝜕𝑥
 (𝑢2
𝛿

0
− 𝑢𝑈)𝑑𝑦 =  𝜌

𝜕

𝜕𝑥
 (𝑢𝑈 − 𝑢2
𝛿

0
)𝑑𝑦  

= 𝜌
𝜕

𝜕𝑥
 𝑈2(

𝑢

𝑈
−
𝑢2

𝑈2

𝛿

0

)𝑑𝑦  



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 

= 𝜌𝑈2
𝜕

𝜕𝑥
 
𝑢

𝑈
(1 −

𝑢

𝑈

𝛿

0

)𝑑𝑦  

𝜏0

𝜌𝑈2
= 

𝜕

𝜕𝑥
 

𝑢

𝑈
(1 −

𝑢

𝑈

𝛿

0
)𝑑𝑦   

 
𝑢

𝑈
(1 −

𝑢

𝑈

𝛿

0
)𝑑𝑦 is equal to momentum thickness (𝜃) 

𝜏0

𝜌𝑈2
= 
𝜕𝜃

𝜕𝑥
--------(3) 

 Equation (3) is known as Von Karman momentum integral equation for 

boundary layer Flows 

 

 

 



 

 

Drag Force on a Flat Plate due to 
Boundary Layer (Cont…) 
 Von Karman momentum integral equation is applied to  

(1) Laminar boundary layers 

(2) Transition boundary layers 

(3) Turbulent boundary layer flows 

 The drag force on a small distance ∆𝑥 of the plate is obtained as ∆𝐹𝐷 = 𝜏0∆𝑥𝑏  

 Then the total drag on the plate of  length L on one side is 

𝐹𝐷 =  ∆𝐹𝐷 =  𝜏0𝑏𝑑𝑥
𝐿

0
                 𝐶𝑕𝑎𝑛𝑔𝑒∆𝑥 = 𝑑𝑥  



 The drag force on the plate can be determined if the velocity profile near the 

plate is known 

 Von Karman momentum integral equation is given by 
𝜏0

𝜌𝑈2
= 
𝜕𝜃

𝜕𝑥
 

Summary 
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When a solid body is immersed in flowing fluid,  along the length of the 

solid body, the thickness of the boundary layer increases 

The fluid layer adjacent to the solid surface has to do work against surface 

friction at the expense of its kinetic energy 

This loss of the kinetic energy is recovered from the immediate fluid layer 

in contact with the layer adjacent to solid surface through momentum 

exchange process 

 

Boundary Layer Separation 



Thus the velocity of the layer goes on decreasing 

Along the length of the solid body, at a certain point a stage may come 

when the boundary layer may not be able to keep sticking to the solid 

body  

 In other words, the boundary layer will be separated from the surface 

 

Boundary Layer Separation(Cont…) 



This phenomenon is called the 

boundary layer separation 

The point on the body at which 

the boundary layer is on the verge 

of separation from the surface is 

called point of separation 

Boundary Layer Separation(Cont…) 



The effect of pressure gradient 

𝑑𝑝

𝑑𝑥
 on boundary layer 

separation can be explained by 

considering the flow over a 

curved surface ABCSD 

Effect of Pressure Gradient on 
Boundary Layer Separation 



 In the region ABC of the curved 

surface, the area of flow 

decreases and hence velocity 

increases 

This means flow gets accelerated 

in this region 

 

Effect of Pressure Gradient on 
Boundary Layer Separation(Cont…) 



 The pressure decreases in the 

direction of the flow and hence 

pressure gradient 
𝑑𝑝

𝑑𝑥
 is negative 

in this region 

 As long as 
𝑑𝑝

𝑑𝑥
< 0 , the entire 

boundary layer moves forward 

Effect of Pressure Gradient on 
Boundary Layer Separation(Cont…) 



 The pressure is minimum at the 

point C 

 Along the region CSD of the 

curved surface, the area of flow 

increases and hence velocity of 

flow along the direction of fluid 

decreases 

Effect of Pressure Gradient on 
Boundary Layer Separation(Cont…) 



 Due to decrease of velocity, the pressure increases in the direction of flow 

and hence 
𝑑𝑝

𝑑𝑥
 is positive or 

𝑑𝑝

𝑑𝑥
> 0  

 As the kinetic energy of the layer is used to overcome the frictional 

resistance of the surface 

 Combined effect of  positive pressure gradient and surface resistance 

reduce the momentum of the fluid  

 

 

Effect of Pressure Gradient on 
Boundary Layer Separation(Cont…) 



 A stage may come where momentum of the fluid is unable to overcome 

the surface resistance and the boundary layer starts separating from the 

surface at the point S 

Effect of Pressure Gradient on 
Boundary Layer Separation(Cont…) 

 Downstream the point S, the flow is taking place 

in reverse direction and the velocity gradient 

becomes negative 

 Thus the positive pressure gradient helps in 

separating the boundary layer 

 



 The separation point S is determined from the condition 
𝜕𝑢

𝜕𝑦 𝑦=0
= 0 

1. If  
𝜕𝑢

𝜕𝑦 𝑦=0
< 0,  then the flow has separated 

2. If  
𝜕𝑢

𝜕𝑦 𝑦=0
= 0,  then the flow is on the verge of  separated 

3.  If  
𝜕𝑢

𝜕𝑦 𝑦=0
> 0,  then the flow  will not separate or flow will remain 

attached with the surface 

 

Location of Separation Point 



1. Suction of the slow moving fluid by a suction slot 

2. Supplying additional energy from a blower 

3. Providing a bypass in the slotted wing 

4. Rotating boundary in the direction of flow 

Methods of Preventing the Separation 
of Boundary Layer 



5. Providing small divergence in a diffuser 

6. Providing guide-blades in a bend 

7. Providing a trip-wire ring in the laminar region for the flow over a 

sphere 

Methods of Preventing the Separation 
of Boundary Layer (Cont…) 



 When a solid body is immersed in flowing fluid,  along the length of the solid body, 

the thickness of the boundary layer increases 

 The point on the body at which the boundary layer is on the verge of separation 

from the surface is called point of separation 

 The boundary layer separation point S is determined from the condition 

𝜕𝑢

𝜕𝑦 𝑦=0
= 0 

 

Summary 
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Circulation on submerged Bodies 
 Circulation is defined as the flow along a closed curve 

 Mathematically, the circulation is obtained if the product of the velocity 

component along the curve at any point and the length of the small 

element containing that point is integrated around the curve 

 Let  E is any point on the closed 

curve and ‘dS’ is a small length of the 

closed curve containing point E 



Circulation on submerged 
Bodies(Cont…) 
 Let 𝜃1 =Angle made by the tangent at E with the direction of flow 

𝑢𝜃1 = Component of free stream velocity along the tangent at E and is given 

as=U cos𝜃1 

 By definition, circulation along the closed curve is  

Γ =  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑎𝑙𝑜𝑛𝑔 𝑐𝑢𝑟𝑣𝑒 𝑋 𝐿𝑒𝑛𝑔𝑡𝑕 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

=  𝑈 𝑐𝑜𝑠 𝜃1X dS , where  =Integral for the complete closed curve 



Force Exerted by a Flowing Fluid 
on a Stationary Body 
 Consider a  body held stationary in a real fluid 

 The fluid will exert a force on the stationary body 

 The total force (𝐹𝑅) exerted by the fluid on 

the body is perpendicular  to the surface of 

the body 

 The total force can be resolved into two 

components, one in direction of motion and 

other perpendicular to  direction of motion  



Force Exerted by a Flowing Fluid 
on a Stationary Body(Cont…) 
Drag: 

 The component of the total force(𝐹𝑅) in the direction of motion is called 

‘drag’. This component is denoted by 𝐹𝐷 

Lift: 

 The component of the total force(𝐹𝑅) in the direction perpendicular to 

the direction of motion is known as ‘lift’ 

 This is denoted by 𝐹𝐿 



Force Exerted by a Flowing Fluid 
on a Stationary Body(Cont…) 
 Lift force occurs only when the axis of the body is inclined to the 

direction of  fluid flow 

 If the axis of the body is parallel to the direction of fluid flow ,lift force is 

zero 

 If the fluid is assumed ideal and the body is symmetrical such as a sphere 

or cylinder, both the drag and lift will be zero 



Expression for Drag and Lift 
 Consider a small elemental area dA on the surface of the body 

 The forces acting on the surface area 

dA are: 

1. Pressure force equal to pXdA, acting 

perpendicular to the surface 

2. Shear force equal to 𝜏0𝑋 𝑑𝐴, acting 

along the tangential direction to the 

surface  



Expression for Drag and Lift(Cont…) 
 Let 𝜃 =Angle made by pressure force with horizontal direction 

(a) Drag Force(𝑭𝑫) 

The drag force on the elemental area= 

Force due to pressure in the direction of 

fluid motion+ Force due to shear stress 

in the direction of fluid motion 

= 𝑝𝑑𝐴 𝑐𝑜𝑠𝜃 + 𝜏0𝑑𝐴 cos 90
0 − 𝜃  

= 𝑝𝑑𝐴 𝑐𝑜𝑠𝜃 + 𝜏0𝑑𝐴 𝑠𝑖𝑛𝜃 



Expression for Drag and Lift(Cont…) 
 Total drag   𝐹𝐷 = Summation of pdA cos𝜃 +Summation of 𝜏0𝑑𝐴 𝑠𝑖𝑛𝜃 

  =  p cos𝜃 dA+  𝜏0 𝑠𝑖𝑛𝜃 𝑑𝐴 

 The term  p cos𝜃 dA is called the pressure drag or form drag while the 

term  𝜏0 𝑠𝑖𝑛𝜃 𝑑𝐴 is called the friction drag or skin drag or shear drag 

(b) Lift Force(𝑭𝑳) 

 The lift force on elemental area= Force due to pressure in the direction 

perpendicular to the direction of motion + Force due to shear stress in 

the direction perpendicular to the direction of motion 



Expression for Drag and Lift(Cont…) 
= -pdA sin𝜃 + 𝜏0𝑑𝐴𝑠𝑖𝑛(90

0 − 𝜃) 

= -pdA sin𝜃 + 𝜏0𝑑𝐴𝑐𝑜𝑠𝜃 

 Negative sign is taken with pressure force as it is acting in the downward 

direction while shear force is acting vertically up 

Total lift, 𝐹𝐿 =  𝜏0𝑑𝐴𝑐𝑜𝑠𝜃 − pdA sin𝜃 

                       =  𝜏0𝑐𝑜𝑠𝜃𝑑𝐴 − p sin𝜃 dA 

  



Expression for Drag and Lift(Cont…) 

 The drag and lift for a body moving in a fluid of density 𝜌, at a uniform 

velocity U are calculated mathematically as 

𝐹𝐷 = 𝐶𝐷𝐴
𝜌𝑈2

2
 

𝐹𝐿 = 𝐶𝐿𝐴
𝜌𝑈2

2
 

Where 𝐶𝐷 = Co-efficient of drag,  𝐶𝐿 = Co-efficient of lift,  



Expression for Drag and Lift(Cont…) 
A= Area of the body which is the projected area of the body perpendicular to 

the direction of flow or largest projected area of the immersed body 

 Then resultant force on the body, 𝐹𝑅 = 𝐹𝐷
2 + 𝐹𝐿

2 



Problem:1 



Problem:1(Cont…) 



Problem:1(Cont…) 



Magnus Effect 
 When a cylinder is rotated in a uniform flow , a lift force is produced on 

the cylinder 

 This phenomenon of the lift force produced by a rotating cylinder in a 

uniform flow is known as Magnus Effect 



 Circulation is obtained if the product of the velocity component along the curve at 

any point and the length of the small element containing that point is integrated 

around the curve =  𝑈 𝑐𝑜𝑠 𝜃1X dS  

 The component of the total force(𝐹𝑅) in the direction of motion is called ‘drag’= 

=  p cos𝜃 dA+  𝜏0 𝑠𝑖𝑛𝜃 𝑑𝐴 

 The component of the total force(𝐹𝑅) in the direction perpendicular to the 

direction of motion is known as ‘lift’ =  𝜏0𝑐𝑜𝑠𝜃𝑑𝐴 − p sin𝜃 dA 

 The phenomenon of the lift force produced by a rotating cylinder in a uniform 

flow is known as Magnus Effect 

Summary 
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Introduction 

 The liquid comes out in the form of a jet from the outlet of  a nozzle, 

which is fitted to a pipe through which the liquid is flowing under 

pressure 

 If some plate, which may be fixed or moving is placed in the path of the 

jet, a force is exerted by the jet on the plate 

 This force is obtained from Newton’s second law of motion or from 

impulse- momentum equation 



Introduction(Cont…) 
 Thus impact of jet means the force exerted by the jet on a plate which 

may be stationary or moving. The cases of the impact of jet are 

On a Stationary Plate, when 

Plate is Vertical to the Jet 

Plate is Inclined to the Jet 

Plate is Curved 

On a Moving Plate, when 

Plate is Vertical to the Jet 

Plate is Inclined to the Jet 

Plate is Curved 



Force Exerted by the jet on a 
Stationary Vertical Plate 
 Consider a jet of water coming 

out from the nozzle, strikes a flat 

vertical plate as shown in fig 

 Let V= velocity of the jet,  

d= diameter of the jet 

a= area of cross section of the jet 

=
𝜋

4
𝑑2 



Force Exerted by the jet on a 
Stationary Vertical Plate(Cont…) 
 The jet after striking the plate, will move along the plate 

 But the plate is at right angles to the jet 

 Hence the jet after striking, will get 

deflected through 900 

 Hence the component of the velocity of 

jet in the direction of jet, after striking 

will be zero 



Force Exerted by the jet on a 
Stationary Vertical Plate(Cont…) 
 The force exerted by the jet on the plate in the direction of jet 

𝐹𝑥 =Rate of change of momentum in the direction of force 

=
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 − 𝐹𝑖𝑛𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

𝑇𝑖𝑚𝑒
 

=
(𝑀𝑎𝑠𝑠 𝑋 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)  − (𝑀𝑎𝑠𝑠 𝑋 𝐹𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)

𝑇𝑖𝑚𝑒
 

=
𝑀𝑎𝑠𝑠 

𝑇𝑖𝑚𝑒
[𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 − 𝐹𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦] 

 



Force Exerted by the jet on a 
Stationary Vertical Plate(Cont…) 
=

𝑀𝑎𝑠𝑠 

𝑇𝑖𝑚𝑒
[𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑗𝑒𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑡𝑟𝑖𝑘𝑖𝑛𝑔 − 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑗𝑒𝑡 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑟𝑖𝑘𝑖𝑛𝑔] 

                                                     = 𝜌𝑎𝑉 𝑉 − 0                 
𝑚𝑎𝑠𝑠

𝑠𝑒𝑐
= 𝜌𝑎𝑉  

𝐹𝑥 = 𝜌𝑎𝑉2 

 If the force exerted on the jet is to be calculated then final velocity minus 

initial velocity is taken 

 If the force exerted by the jet on the plate is to be calculated then initial 

velocity minus final velocity is taken 



Problem:1 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 

From Flow through nozzles ,We know that actual velocity  

=𝑉𝑎𝑐𝑡 = 𝑉 = 𝑣 =
2𝑔𝐻

1+
4𝑓𝐿𝑎2

𝐷𝐴2

 

𝑉𝑡ℎ = 𝑣 =
2𝑔𝐻

1 +
4(0)𝐿𝑎2

𝐷𝐴2

= 2𝑔𝐻 



Problem:2(Cont…) 



Force Exerted by the jet on a 
Stationary Inclined Flat Plate 
 Let a jet of water, coming out from the nozzle, strikes an inclined flat plate 

as shown in fig 

 Let  V= Velocity of jet in the direction of x 

 𝜃 =Angle between the jet and plate 

 a= Area of cross –section of the jet 

Mass of water per sec striking the plate=𝜌𝑎𝑉 



Force Exerted by the jet on a 
Stationary Inclined Flat Plate(Cont…) 
 If the plate is smooth and  assumed that 

there is no loss of energy due to impact of 

jet 

 Then jet will move over the plate after 

striking with a velocity equal to initial 

velocity i.e  with a velocity V 



Force Exerted by the jet on a 
Stationary Inclined Flat Plate(Cont…) 
 Force exerted by the jet on the plate in the direction normal to the 

plate(𝐹𝑛)  

𝐹𝑛

= mass of jet striking per second X [Initial velocity of  

jet before striking in  the direction of n−Final velocity 

of jet after striking in the direction of n] 

= 𝜌𝑎𝑉 𝑉𝑠𝑖𝑛𝜃 − 0  

𝐹𝑛 = 𝜌𝑎𝑉2𝑠𝑖𝑛𝜃 

  



Force Exerted by the jet on a 
Stationary Inclined Flat Plate(Cont…) 
 This force can be resolved into two components, one in the direction of 

the jet and other perpendicular to the direction of flow 

 𝐹𝑥 =component of 𝐹𝑛 in the direction of flow 

= 𝐹𝑛 cos 900 − 𝜃  

= 𝐹𝑛 sin 𝜃 

But     𝐹𝑛 = 𝜌𝑎𝑉2𝑠𝑖𝑛𝜃 

= 𝜌𝑎𝑉2𝑠𝑖𝑛𝜃 sin 𝜃 

𝐹𝑥 = 𝜌𝑎𝑉2𝑠𝑖𝑛2𝜃 



Force Exerted by the jet on a 
Stationary Inclined Flat Plate(Cont…) 
 𝐹𝑦 =component of 𝐹𝑛, perpendicular to flow 

𝐹𝑦 = 𝐹𝑛sin (900 − 𝜃) 

𝐹𝑦 = 𝐹𝑛cos 𝜃 

𝐹𝑦 = 𝜌𝐴𝑉2𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 

 



Problem:3 



Problem:3(Cont…) 



 Impact of jet means the force exerted by the jet on a plate which may be 

stationary or moving 

 The force exerted by the jet on the plate in the direction of jet for Stationary 

Vertical Plate 𝐹𝑥 = 𝜌𝑎𝑉2 

 Force exerted by the jet on the plate in the direction normal to the 

plate 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 𝑝𝑙𝑎𝑡𝑒 𝐹𝑛 = 𝜌𝑎𝑉2𝑠𝑖𝑛𝜃 

 The component of 𝐹𝑛 in the direction of flow 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 𝑝𝑙𝑎𝑡𝑒 𝐹𝑥 =

𝜌𝑎𝑉2𝑠𝑖𝑛2𝜃 

 The component of 𝐹𝑛, perpendicular to flow 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 𝑝𝑙𝑎𝑡𝑒 𝐹𝑦 =

𝜌𝐴𝑉2𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 

 

Summary 
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Force Exerted by a Jet on Stationary 
Curved Plate 
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Jet strikes the curved plate at the centre 

Jet strikes the curved plate at one end tangentially when plate is 
symmetrical 

Jet strikes the curved plate at one end tangentially when the plate is 
unsymmetrical 



 Jet Strikes the Curved Plate at the 
Centre 
 The jet after striking the plate, 

comes out with the same 

velocity if the plate is smooth 

and there is no loss of energy 

due to impact of the jet, in the 

tangential direction of the 

curved plate 



 Jet Strikes the Curved Plate at the 
Centre(Cont…) 
 The velocity at outlet of the plate can be resolved into two components 

 One in the direction of jet and other perpendicular to the direction of the 

jet 

 Force exerted by the jet in the direction of jet 

𝐹𝑥 =mass per sec X [𝑉1𝑥 − 𝑉2𝑥] 

 Where 𝑉1𝑥 =Initial velocity in the direction 

of jet=V 

 



 Jet Strikes the Curved Plate at the 
Centre(Cont…) 
 𝑉2𝑥=Final velocity in the direction of jet=−𝑉𝑐𝑜𝑠𝜃 

𝐹𝑥 = 𝜌𝑎𝑉 [V−(−𝑉𝑐𝑜𝑠𝜃)] = 𝜌𝑎𝑉 [V + 𝑉𝑐𝑜𝑠𝜃] 

𝐹𝑥 = 𝜌𝑎𝑉2 [1+𝑐𝑜𝑠𝜃] 

Similarly,  

𝐹𝑦 =mass per sec X [𝑉1𝑦 − 𝑉2𝑦] 

Where 𝑉1𝑦 =Initial velocity in the direction of y=0 

𝑉2𝑥=Final velocity in the direction of y=𝑉𝑠𝑖𝑛𝜃 



 Jet Strikes the Curved Plate at the 
Centre(Cont…) 
𝐹𝑦 = 𝜌𝑎𝑉 [0−V𝑠𝑖𝑛𝜃] 

𝐹𝑦 = −𝜌𝑎𝑉2𝑠𝑖𝑛𝜃 

 -ve sign means that force is acting  in the 

downward direction  

 In this case the angle of deflection of the jet= 

(1800 − 𝜃) 

 

 



Problem:1 



Problem:1(Cont…) 



Jet Strikes the Curved Plate at One end 
Tangentially when the plate is Symmetrical 
 Jet strikes the curved fixed plate at one 

end tangentially  

 Let the curved plate is symmetrical 

about 𝑥 axis 

 Let V= Velocity of jet of water 

𝜃= Angle made by jet with 𝑥 axis at inlet 

tip  of the curved plate 



Jet Strikes the Curved Plate at One end 
Tangentially when the plate is Symmetrical 
 If the plate is smooth and loss of energy due to impact is zero 

 Then the velocity of water at the outlet tip of the curved plate will be 

equal to V 

 The forces exerted by the jet of water in the 

 direction of x  and y are 

𝐹𝑥 =(mass/sec)X 𝑉1𝑥 − 𝑉2𝑥  

= 𝜌𝑎𝑉 𝑉𝑐𝑜𝑠𝜃 − (−𝑉𝑐𝑜𝑠𝜃)  



Jet Strikes the Curved Plate at One end Tangentially 
when the plate is Symmetrical(Cont…) 

= 2𝜌𝑎𝑉2 𝑐𝑜𝑠𝜃 

𝐹𝑦 = 𝜌𝑎𝑉 𝑉1𝑦 − 𝑉2𝑦  

𝐹𝑦 = 𝜌𝑎𝑉 [𝑉𝑠𝑖𝑛𝜃 − 𝑉𝑠𝑖𝑛𝜃]=0 

 



Jet Strikes the Curved Plate at One end Tangentially 
when the plate is Unsymmetrical 
 Angle made by the tangents drawn at the inlet and outlet tips of the plate 

with 𝑥 axis will be different 

 Let 𝜃 = angle made by tangent at inlet tip with x axis, 𝜙 =angle made by 

tangent at outlet tip with x axis 

 The two components of the velocity at inlet are 

𝑉1𝑥 =Vcos𝜃 and 𝑉1𝑦 =Vsin𝜃  

 The two components of the velocity at outlet are 

𝑉2𝑥 = −Vcos𝜙 and 𝑉2𝑦 =Vsin 𝜙 



Jet Strikes the Curved Plate at One end Tangentially 
when the plate is Unsymmetrical(Cont…) 
 The forces exerted by the jet of water in the directions of x  and y are 

𝐹𝑥 = 𝜌𝑎𝑉[𝑉1𝑥 − 𝑉2𝑥]= 𝜌𝑎𝑉[𝑉𝑐𝑜𝑠𝜃 − (−𝑉𝑐𝑜𝑠𝜙 )] 

= 𝜌𝑎𝑉[𝑉𝑐𝑜𝑠𝜃 + 𝑉𝑐𝑜𝑠𝜙 ] 

= 𝜌𝑎𝑉2[𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜙 ] 

𝐹𝑦 = 𝜌𝑎𝑉[𝑉1𝑦 − 𝑉2𝑦]= 𝜌𝑎𝑉[𝑉𝑠𝑖𝑛𝜃 − (𝑉𝑠𝑖𝑛𝜙 )] 

= 𝜌𝑎𝑉2[𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜙 ] 

 

 



Problem:2 



Problem:2(Cont…) 



 For the case Jet Strikes the Curved Plate at the Centre , 𝐹𝑥 = 𝜌𝑎𝑉2 [1+𝑐𝑜𝑠𝜃]  and 

𝐹𝑦 = −𝜌𝑎𝑉2𝑠𝑖𝑛𝜃 

 For the case Jet Strikes the Curved Plate at One end Tangentially when the plate is 

Symmetrical, 𝐹𝑦 = 𝜌𝑎𝑉 𝑉1𝑦 − 𝑉2𝑦  𝑎𝑛𝑑  𝐹𝑦 =0 

 For the case Jet Strikes the Curved Plate at One end Tangentially when the plate is 

Unsymmetrical 𝐹𝑥 = 𝜌𝑎𝑉2[𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜙 ] and 𝐹𝑦 = 𝜌𝑎𝑉2[𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜙 ] 

 

 

Summary 
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 Force exerted by a Jet on a Hinged Plate 

 Consider a jet of water striking a 

vertical plate at the centre which is 

hinged  at O 

 Due to force exerted by the jet on 

the plate, the plate will swing 

through  some angle about the 

hinge   



 Force exerted by a Jet on a Hinged 
Plate(Cont…) 

Let x= distance of the centre jet from hinge O 

𝜃 = angle of swing about hinge 

W= weight of plate  acting at C.G of the plate 

 The point A on the  plate will be at 𝐴′ after the jet strikes the plate 

 The distance OA=O 𝐴′ =x 

 Let the weight of the plate is acting at 𝐴′  



 Force exerted by a Jet on a Hinged 
Plate(Cont…) 
 When the plate is in equilibrium after the jet strikes the plate, the moment 

of all the forces about the hinge must be zero  

 Two forces are acting  on the plate 

1. Force due to jet of water , normal to the 

plate 

2. Weight of the plate, W 



 Force exerted by a Jet on a Hinged 
Plate(Cont…) 
1. Force due to jet of water , normal to the plate 

𝐹𝑛 = 𝜌𝑎𝑉2𝑠𝑖𝑛𝜃′ 

Where 𝜃′ =Angle between jet and plate=(900 − 𝜃) 

2. Weight of the plate, W 

Moment of force 𝐹𝑛 about hinge= 𝐹𝑛 X OB 

= 𝜌𝑎𝑉2sin⁡(900 − 𝜃)XOB 

= 𝜌𝑎𝑉2cos⁡𝜃XOB 



 Force exerted by a Jet on a Hinged 
Plate(Cont…) 
= 𝜌𝑎𝑉2cos⁡𝜃X

𝑂𝐴

𝑐𝑜𝑠𝜃
 

= 𝜌𝑎𝑉2OA = 𝜌𝑎𝑉2x 

Moment of  weight  W about hinge=W XO𝐴′sin 𝜃 

=W X𝑥Xsin 𝜃 

For equilibrium of the plate,  

𝜌𝑎𝑉2𝑋𝑥 = 𝑊𝑋𝑥𝑋𝑠𝑖𝑛𝜃 

sin 𝜃= 
𝜌𝑎𝑉2

𝑊
 



 Problem:1 



 Problem:1(Cont…) 



 Problem:2 



 Problem:2(Cont…) 



 Problem:2(Cont…) 



 Force on Flat Vertical Plate Moving in 
the Direction of Jet 
 Fig shows a jet of water striking a flat 

vertical plate moving with a uniform 

velocity away from the jet 

 Let V=velocity of the jet(absolute) 

a= area of cross section of the jet 

u= velocity of the flat plate 



 Force on Flat Vertical Plate Moving in 
the Direction of Jet(Cont…) 
 In this case, the jet does not strike the plate with a 

velocity V, but it strikes  with a relative velocity,  which 

is equal to the absolute velocity of jet of water minus 

the velocity of the plate 

 Hence relative velocity of the jet with respect to 

plate= (𝑉 − 𝑢) 

 Mass of water striking the plate per sec=𝜌X Area of jet X 

Velocity with which jet strikes the plate= 𝜌aX[V − u] 



 Force on Flat Vertical Plate Moving in 
the Direction of Jet(Cont…) 
 Force exerted by the jet on the moving plate in the direction of the jet 

𝐹𝑥 =Mass of water striking per sec X [ Initial velocity with which water 

strikes- Final velocity] 

𝐹𝑥 = 𝜌𝑎 𝑉 − 𝑢 [ 𝑉 − 𝑢 − 0]               

( Final velocity in the direction of jet is zero) 

𝐹𝑥 = 𝜌𝑎 𝑉 − 𝑢 2 



 Force on Flat Vertical Plate Moving in 
the Direction of Jet(Cont…) 
 For the stationary plates, the work done is zero 

 In this case, the work be done by the jet on the plate, as plate is moving 

Work done per second by the jet on the plate= Force 

X
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑓𝑜𝑟𝑐𝑒

𝑇𝑖𝑚𝑒
 

= 𝐹𝑥𝑋𝑢 

= 𝜌𝑎 𝑉 − 𝑢 2𝑋𝑢 



 Problem:3 



 Problem:3 



 Due to force exerted by the jet on the plate, the plate will swing through  

some angle about the hinge   

 Force due to jet of water  on a Hinged Plate, normal to the plate 𝐹𝑛 =

𝜌𝑎𝑉2𝑠𝑖𝑛𝜃′ 

 Force exerted by the jet on Flat Vertical Plate Moving in the Direction of Jet 

𝐹𝑥 = 𝜌𝑎 𝑉 − 𝑢 2 

Work done per second by the jet on Flat Vertical Plate Moving in the 

Direction of Jet = 𝜌𝑎 𝑉 − 𝑢 2𝑋𝑢 

 

Summary 
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 Force on the Inclined Plate Moving in 
the Direction of the Jet 

Let V= Absolute velocity of jet of water 

u= velocity of the plate in the direction of 

jet 

a= cross sectional area of jet 

𝜃 =angle between jet and plate 

Relative velocity of jet of water=(V-u) 

The velocity with which jet strikes=(V-u) 



 Force on the Inclined Plate Moving in 
the Direction of the Jet(Cont…) 

Mass of water striking per second 

= 𝜌𝑋𝑎𝑋(𝑉 − 𝑢) 

 If the plate is smooth and loss of 

energy due to impact of the jet is 

assumed to be zero 

 The jet of water will leave the inclined 

plate with a velocity =(V-u) 



 Force on the Inclined Plate Moving in 
the Direction of the Jet(Cont…) 

The force exerted by the jet of water on the plate 

in the direction normal to the plate  

𝐹𝑛 =Mass striking per second X [ Initial velocity 

in the normal direction with which jet strikes- 

Final velocity] 

𝐹𝑛 = 𝜌𝑎 𝑉 − 𝑢 𝑉 − 𝑢 𝑠𝑖𝑛𝜃 − 0  

𝐹𝑛 = 𝜌𝑎 𝑉 − 𝑢 2𝑠𝑖𝑛𝜃 



 Force on the Inclined Plate Moving in 
the Direction of the Jet(Cont…) 
 This normal force 𝐹𝑛 is resolved into 𝐹𝑥 and 

𝐹𝑦  in the direction of the jet and 

perpendicular to the direction of the jet 

respectively 

𝐹𝑥 = 𝐹𝑛𝑠𝑖𝑛𝜃 = 𝜌𝑎 𝑉 − 𝑢 2𝑠𝑖𝑛𝜃2 

𝐹𝑦 = 𝐹𝑛𝑐𝑜𝑠𝜃 = 𝜌𝑎 𝑉 − 𝑢 2𝑠𝑖𝑛𝜃 cos𝜃 

 



 Force on the Inclined Plate Moving in 
the Direction of the Jet(Cont…) 
 Work done per second by the jet  on the plate = 𝐹𝑥𝑋 Distance per second 

in the direction of x 

= 𝐹𝑥𝑋𝑢 

= 𝜌𝑎 𝑉 − 𝑢 2𝑠𝑖𝑛𝜃2𝑋 𝑢 

= 𝜌𝑎 𝑉 − 𝑢 2𝑢𝑠𝑖𝑛𝜃2 



 Problem:1 



 Problem:1(Cont…) 



 Problem:1(Cont…) 



Force on the Curved Plate when the 
Plate is Moving in the direction of jet 
 Let a jet of water strikes a curved 

plate at the centre of the plate 

which is moving with a uniform 

velocity in the direction of the jet as 

shown in fig 

Let V=absolute velocity of jet, a= area 

of jet, u= velocity of the plate in the 

direction of the jet 



Force on the Curved Plate when the Plate is 
Moving in the direction of jet(Cont….) 
 Relative velocity of the jet of 

water or the velocity with which 

jet strikes the curved plate=(V-u) 

 If plate is smooth and the loss of 

energy due to impact of jet is zero 

 The velocity with which the jet 

will be leaving the curved 

vane=(V-u) 



Force on the Curved Plate when the Plate is 
Moving in the direction of jet(Cont….) 
 Component of the velocity in the 

direction of jet= − 𝑉 − 𝑢 𝑐𝑜𝑠𝜃 

 Component of the velocity in the 

direction perpendicular to the 

direction of the jet= 𝑉 − 𝑢 𝑠𝑖𝑛𝜃 

 



Force on the Curved Plate when the Plate is 
Moving in the direction of jet(Cont….) 
 Mass of the water striking the plate = 𝜌𝑋𝑎𝑋velocity with which jet 

strikes the plate  

= 𝜌𝑎(𝑉 − 𝑢) 

 Force exerted by the jet of water on the curved plate in the direction of 

the jet (𝐹𝑥) 

 𝐹𝑥 =Mass striking per sec X [ Initial velocity with which jet strikes the 

plate in the direction of jet−Final velocity] 



Force on the Curved Plate when the Plate is 
Moving in the direction of jet(Cont….) 

𝐹𝑥 = 𝜌𝑎 𝑉 − 𝑢 [ 𝑉 − 𝑢 − − 𝑉 − 𝑢 𝑐𝑜𝑠𝜃 ] 

𝐹𝑥 = 𝜌𝑎 𝑉 − 𝑢 [ 𝑉 − 𝑢 + 𝑉 − 𝑢 𝑐𝑜𝑠𝜃] 

𝐹𝑥 = 𝜌𝑎 𝑉 − 𝑢 2 [1 + 𝑐𝑜𝑠𝜃] 

 Work done by the jet on the plate per 

second= 𝐹𝑥X Distance travelled per second 

in the direction of x= 𝐹𝑥Xu 

= 𝜌𝑎 𝑉 − 𝑢 2 [1 + 𝑐𝑜𝑠𝜃]Xu 

= 𝜌𝑎 𝑉 − 𝑢 2 𝑋u[1 + 𝑐𝑜𝑠𝜃] 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



 The  𝐹𝑛 for Inclined Plate Moving in the Direction of the Jet, 𝐹𝑛 = 𝜌𝑎 𝑉 − 𝑢 2𝑠𝑖𝑛𝜃 

  The  𝐹𝑥 and 𝐹𝑦 for Inclined Plate Moving in the Direction of the Jet, 𝐹𝑥 = 𝐹𝑛𝑠𝑖𝑛𝜃 = 

𝜌𝑎 𝑉 − 𝑢 2𝑠𝑖𝑛𝜃2, 𝐹𝑦 = 𝐹𝑛𝑐𝑜𝑠𝜃 = 𝜌𝑎 𝑉 − 𝑢 2𝑠𝑖𝑛𝜃 cos𝜃 

 Work done per second by the jet  on the plate for Inclined Plate Moving in the 

Direction of the Jet = 𝜌𝑎 𝑉 − 𝑢 2𝑢𝑠𝑖𝑛𝜃2 

 Work done  and Force exerted by the jet of water on the Curved Plate when the 

Plate is Moving in the direction of jet on the curved plate in the direction of the jet  

𝜌𝑎 𝑉 − 𝑢 2 𝑋u 1 + 𝑐𝑜𝑠𝜃    𝑎𝑛𝑑 𝐹𝑥 = 𝜌𝑎 𝑉 − 𝑢 2 [1 + 𝑐𝑜𝑠𝜃] 

 

Summary 
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Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when 
Jet Strikes Tangentially at one of the tips 
 As the jet strikes tangentially, the loss 

of energy due to impact of jet will be 

zero 

 The velocity with which jet of water 

strikes is equal to the relative velocity 

of the jet with respect to the plate 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 

 Also as the plate is moving in different direction of the jet, the relative 

velocity at inlet will be equal to the vector difference of the velocity of jet 

and velocity of the plate at inlet 

Let 𝑉1 =Velocity of the jet at inlet 

𝑢1 =Velocity of the plate(vane) at inlet 

𝑉𝑟1 =Relative velocity of jet and plate at inlet 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
𝛼 =Angle between the direction of the 

jet and direction of motion of the plate, 

also called guide blade angle 

𝜃 = Angle made by the relative 

velocity( 𝑉𝑟2)  with the direction of 

motion at inlet also called vane angle at 

inlet 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
𝑉𝑤1 and 𝑉𝑓1

=The components of the velocity of 

the jet 𝑉1,  in the direction of motion and 

perpendicular to the direction of motion of the 

vane respectively 

𝑉𝑤1 =It is also known as velocity of whirl at 

inlet 

𝑉𝑓1
=It is also known as velocity of flow at inlet 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 

𝑉2 = Velocity of the jet, leaving the vane or 

velocity of jet at outlet of the vane 

𝑢2 =Velocity of the vane at outlet 

𝑉𝑟2 = Relative velocity of the jet with 

respect to the vane at outlet 

𝛽 =Angle made by the velocity 𝑉2 with the 

direction of motion of the vane at outlet 

 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
𝜙 =Angle made by the relative velocity 𝑉𝑟2 

with the direction of motion of the vane at 

outlet and also called vane angle at outlet 

𝑉𝑤2
 and 𝑉𝑓2

= Components of the velocity 𝑉2, 

in the direction of motion of vane and 

perpendicular to the direction of motion of 

vane at outlet 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 

𝑉𝑤2 = It is also called the velocity of 

whirl at outlet 

𝑉𝑓2
= Velocity of flow at outlet 

 The triangles ABD and EGH are 

called the velocity triangles at inlet 

and outlet 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
Velocity Triangle at Inlet 

 Take any point A and draw a line AB=𝑉1 in magnitude and direction which 

means line AB makes an angle 𝛼 with the horizontal line AD 

 Next draw a line AC= 𝑢1 in magnitude 

 Join C to B , CB represents the relative 

velocity of the jet at inlet 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
 If the loss of energy at inlet due to impact is zero, then CB must be in the 

tangential direction to the vane at inlet  

 From B draw a vertical line BD in the 

direction to meet the horizontal line AC 

produced at D 

 Then BD= Represents the velocity of 

flow at inlet=𝑉𝑓1
 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
AD= Represents the velocity of whirl at inlet =𝑉𝑤1 

< 𝐵𝐶𝐷 =Vane angle at inlet=𝜃 

Velocity Triangle at Outlte 

 The water will be gliding over the surface of the vane with a relative 

velocity equal to 𝑉𝑟1 and will come out of the vane with a relative velocity 

 𝑉𝑟2 

 The relative velocity at outlet  𝑉𝑟2=  𝑉𝑟1 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
 The relative velocity at outlet should be in tangential direction to the vane 

at outlet 

 Draw EG in the tangential direction 

of the vane at outlet and cut EG=  𝑉𝑟2 

 From G, draw a line GF in the 

direction of vane at outlet and equal 

to 𝑢2 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
 Join EF represents the absolute velocity of the jet at outlet in magnitude 

and direction 

 From E draw a vertical line EH to 

meet the line GF produced at H 

 If the vane is smooth and is having 

velocity in the direction of motion at 

inlet and outlet equal  



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
 𝑢1 = 𝑢2 = 𝑢= Velocity of vane in the direction of motion  

  𝑉𝑟1= 𝑉𝑟2 

 Now mass of water striking vane per sec= 𝜌𝑎 𝑉𝑟1 

Where  a=area of jet of water ,  𝑉𝑟1=Relative velocity at inlet 

 Force exerted by the jet in the direction of motion 

𝐹𝑥 =Mass of water striking per sec X [ Initial velocity with which jet strikes in 

the direction  of motion- Final Velocity of jet in the direction of motion] 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
 But initial velocity with which jet strikes 

the vane =  𝑉𝑟1 

 The component of this velocity in the 

direction of motion= 𝑉𝑟1cos𝜃 = ( 𝑉𝑤1
−𝑢1) 

 Similarly , the component of the relative 

velocity at outlet in the direction of 

motion= −𝑉𝑟2 𝑐𝑜𝑠𝜙 = −[𝑢2 + 𝑉𝑤2] 

 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
 𝐹𝑥 =Mass of water striking per sec X [ Initial velocity with which jet 

strikes in the direction  of motion- Final Velocity of jet in the direction of 

motion] 

 𝐹𝑥 = 𝜌𝑎 𝑉𝑟1𝑋[  𝑉𝑤1
−𝑢1 − *−[𝑢2 +  𝑉𝑤2

]} 

 𝐹𝑥 = 𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1−𝑢1 + 𝑢2 +  𝑉𝑤2] 

 But 𝑢1 = 𝑢2 

 𝐹𝑥 = 𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2] 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 

 If 𝛽 is an obtuse angle, then 𝐹𝑥 = 𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1− 𝑉𝑤2] 

 Thus in general , 𝐹𝑥 is written as 𝐹𝑥 = 𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2] 

 Work done per second on the vane by the jet=Force X Distance per 

second in the direction of force 

= 𝐹𝑥 𝑋𝑢 = 𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1
+ 𝑉𝑤2

]Xu 

 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 

 Work done/sec per unit mass of fluid striking per second 

=
𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2]Xu 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑠𝑡𝑟𝑖𝑘𝑖𝑛𝑔/𝑠
  

=
𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2]Xu 

𝜌𝑎 𝑉𝑟1

  

=  [ 𝑉𝑤1+ 𝑉𝑤2]Xu    Nm/kg 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 
 Work done per second per unit weight of fluid striking per second 

=
𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2]Xu 

𝑊𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑠𝑡𝑟𝑖𝑘𝑖𝑛𝑔/𝑠
  

=
𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2]Xu 

𝑔𝑋𝜌𝑎 𝑉𝑟1

  

=
1

𝑔
 [ 𝑉𝑤1+ 𝑉𝑤2]Xu  Nm/N 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 

Efficiency of Jet 

𝜂 =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
=

𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑛 𝑡𝑕𝑒 𝑣𝑎𝑛𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐾. 𝐸 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑓 𝑡𝑕𝑒 𝑗𝑒𝑡
 

𝜂 =
𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2]Xu

1
2

𝑚𝑉1
2

 



Force Exerted by a Jet of Water on an 
Unsymmetrical Moving Curved Plate when Jet 
Strikes Tangentially at one of the tips(Cont…) 

Where m= mass of the fluid per second in the jet=𝜌𝑎𝑉1 

𝑉1 =initial velocity of jet 

𝜂 =
𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2]Xu

1
2

(𝜌𝑎𝑉1)𝑉1
2

 



Problem:1 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



 Velocity of the plate(vane) at inlet and outlet are equal, 𝑢1 = 𝑢2 

 Relative velocity at inlet and outlet are equal,  𝑉𝑟1= 𝑉𝑟2 

 Force exerted by the jet in the direction of motion, 𝐹𝑥 = 𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2] 

 Work done/sec per unit mass of fluid striking per second =  [ 𝑉𝑤1+ 𝑉𝑤2]Xu    

Nm/kg 

 Work done per second per unit weight of fluid striking per 

second=
1

𝑔
 [ 𝑉𝑤1

+ 𝑉𝑤2
]Xu  Nm/N 

 Efficiency of Jet 𝜂 =
𝜌𝑎 𝑉𝑟1[ 𝑉𝑤1+ 𝑉𝑤2]Xu

1

2
(𝜌𝑎𝑉1)𝑉1

2  

Summary 
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Force Exerted by a Jet of Water on a 
Series of Vanes 
 The force exerted by a jet of water on 

a single moving plate( which may be 

flat or curved) is not practically 

feasible 

 In actual practice, a large number of 

plates are mounted on the 

circumference of a wheel at a fixed 

distance apart 



Force Exerted by a Jet of Water on a 
Series of Vanes(Cont…) 
 The jet strikes a plate and due to the force exerted by the jet on the plate, 

the wheel starts moving and the 2nd plate mounted on the wheel appears 

before the jet, which again exerts the force on the 2nd plate 

Let    V= Velocity of jet 

d= Diameter of jet 

a= Cross sectional area of jet=
𝜋

4
𝑑2 

u= Velocity of vane 



Force Exerted by a Jet of Water on a 
Series of Vanes(Cont…) 
 In this case the mass of water coming out from the nozzle per second is 

always in contact with the plates, when all the plates are considered 

 Hence mass of water per second striking the series of plates= 𝜌𝑎𝑉 

 The jet strikes the plate with a velocity= (𝑉 − 𝑢) 

 After striking, the jet moves tangential to the plate and hence the velocity 

component in the direction of motion of plate is equal to zero 

 The force exerted by the jet in the direction of motion of plate 

𝐹𝑥 =Mass per second [Initial velocity−Final velocity] 



Force Exerted by a Jet of Water on a 
Series of Vanes(Cont…) 

𝐹𝑥 = 𝜌𝑎𝑉 𝑉 − 𝑢 − 0  

𝐹𝑥 = 𝜌𝑎𝑉 𝑉 − 𝑢  

 Work done by the jet on the series of plates per second=Force X Distance 

per second in the direction of force 

= 𝐹𝑥 𝑋𝑢 = 𝜌𝑎𝑉 𝑉 − 𝑢 𝑋𝑢 

 Kinetic energy of the jet per second 

=
1

2
𝑚𝑉2 =

1

2
𝜌𝑎𝑉 𝑉2 =

1

2
𝜌𝑎𝑉3 



Force Exerted by a Jet of Water on a 
Series of Vanes(Cont…) 
Efficiency,  𝜂 =

𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
=

𝜌𝑎𝑉 𝑉−𝑢 𝑋𝑢 
1

2
𝜌𝑎𝑉3

=
2𝑢 𝑉−𝑢

𝑉2  

Condition for Maximum Efficiency  

𝑑𝜂

𝑑𝑢
= 0 

𝑑

𝑑𝑢

2𝑢 𝑉−𝑢

𝑉2 = 0  

2𝑉 − 2𝑋2𝑢

𝑉2
= 0 



Force Exerted by a Jet of Water on a 
Series of Vanes(Cont…) 

2𝑉 − 4𝑢 = 0 

V=
4𝑢

2
 

   𝑢 =
𝑉

2
 or V=2u           {𝜂 =

2𝑢 𝑉−𝑢

𝑉2 } 

𝜂𝑚𝑎𝑥 =
2𝑢 2𝑢 − 𝑢

(2𝑢)2
 

𝜂𝑚𝑎𝑥 =
2𝑢𝑋𝑢

2𝑢𝑋2𝑢
=

1

2
=0.5 or 500 0  



Force Exerted on a Series of Radial 
Curved Vanes 
 For a radial curved vane, the radius of 

the vane at inlet and outlet is different 

and hence the tangential velocities of 

the radial vane at inlet and outlet will 

not be equal 

 Consider a series of radial curved 

vanes mounted on a wheel  



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 
 The jet of water strikes the vanes 

 The wheel starts rotating at constant angular speed 

Let 𝑅1 =Radius of wheel at inlet of the vane 

𝑅2 =Radius of wheel at the outlet of the vane 

𝜔 =Angular speed of the wheel 

Then ,   𝑢1 = 𝜔𝑅1 and 𝑢2 = 𝜔𝑅2 

 The mass of water striking per second for  a series of vanes=Mass of 

water coming out from nozzle per second = 𝜌𝑎𝑉1 



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 
Where  a= area of jet , 𝑉1 = velocity of jet 

 Momentum of water striking the vanes in the 

tangential direction per sec at inlet=Mass of 

water per second X Component of 𝑉1 in the 

tangential direction = 𝜌𝑎𝑉1X 𝑉𝑤1 

 Component of 𝑉1 in tangential direction  = 

𝑉1𝑐𝑜𝑠𝛼 = 𝑉𝑤1 



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 
 Similarly, momentum of water at outlet per 

sec= 𝜌𝑎𝑉1X Component of 𝑉2 in the tangential 

direction 

= 𝜌𝑎𝑉1X (−𝑉2𝑐𝑜𝑠𝛽) 

 = −𝜌𝑎𝑉1𝑋𝑉𝑤2        𝑉2𝑐𝑜𝑠𝛽 = 𝑉𝑤2  

 Angular momentum per second at 

inlet=Momentum at inlet X Radius at inlet 

= 𝜌𝑎𝑉1𝑋𝑉𝑤1𝑋 𝑅1 



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 
 Angular momentum per second at outlet=Momentum at outlet X Radius 

at outlet 

= −𝜌𝑎𝑉1𝑋𝑉𝑤2𝑋 𝑅2 

 Torque exerted by the water on the wheel, T=Rate of change of angular 

momentum  

=[ Initial angular momentum per second −Final angular momentum per 

second] 

= 𝜌𝑎𝑉1𝑋𝑉𝑤1𝑋 𝑅1 − −𝜌𝑎𝑉1𝑋𝑉𝑤2𝑋 𝑅2 = 𝜌𝑎𝑉1[𝑉𝑤1 𝑅1 + 𝑉𝑤2𝑅2] 



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 
Work done per second on the wheel =Torque X Angular velocity= 𝑇𝑋𝜔 

= 𝜌𝑎𝑉1[𝑉𝑤1 𝑋𝑅1 + 𝑉𝑤2𝑅2] 𝑋𝜔 

= 𝜌𝑎𝑉1[𝑉𝑤1 𝑋𝑅1𝑋𝜔 + 𝑉𝑤2𝑅2𝑋𝜔] 

 But 𝑢1 = 𝜔𝑅1 and 𝑢2 = 𝜔𝑅2 

= 𝜌𝑎𝑉1[𝑉𝑤1 𝑢1 + 𝑉𝑤2𝑢2] 

 If the angle 𝛽 is an obtuse angle, then work done per second will be 

= 𝜌𝑎𝑉1[𝑉𝑤1 𝑢1 − 𝑉𝑤2𝑢2] 



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 
 The general expression for the work done per second on the wheel 

= 𝜌𝑎𝑉1[𝑉𝑤1 𝑢1+𝑉𝑤2𝑢2] 

 If the discharge is radial at outlet, then 𝛽 = 900 and work done becomes 

= 𝜌𝑎𝑉1[𝑉𝑤1 𝑢1] 

Efficiency of the Radial Curved Vane 

𝜂 =
𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
 

 



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 

𝜂 =
𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
=
𝜌𝑎𝑉1[𝑉𝑤1 𝑢1+𝑉𝑤2𝑢2] 

1
2
  
𝑚𝑎𝑠𝑠
𝑠𝑒𝑐

𝑋𝑉1
2

 

=
𝜌𝑎𝑉1[𝑉𝑤1 𝑢1+𝑉𝑤2𝑢2] 

1
2
  𝜌𝑎𝑉1 𝑋𝑉1

2
=
2 [𝑉𝑤1 𝑢1+𝑉𝑤2𝑢2] 

𝑉1
2  

 If there is no loss of energy when water is flowing over the vanes, the work 

done on the wheel per second is also =Change in K.E of the jet per second 

 



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 
 Work done per second on the wheel =Change of K.E per second of the jet 

=(Initial K.E per second−Final K.E per second) of the jet 

=
1

2
𝑚𝑉1

2 −
1

2
𝑚𝑉2

2  

=
1

2
𝑚 𝑉1

2 − 𝑉2
2  

=
1

2
𝜌𝑎𝑉1 𝑉1

2 − 𝑉2
2  



Force Exerted on a Series of Radial 
Curved Vanes(Cont…) 
 Hence efficiency, 𝜂 =

𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑛 𝑡𝑕𝑒 𝑤𝑕𝑒𝑒𝑙

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑓 𝑡𝑕𝑒 𝑗𝑒𝑡
  

=
1

2
𝜌𝑎𝑉1 𝑉1

2−𝑉2
2

1

2
(𝜌𝑎𝑉1

2)𝑉1
2   

=
𝑉1

2−𝑉2
2

𝑉1
2 

  

𝜂 = 1 −
𝑉2

2

𝑉1
2 

 

 



Problem:1 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



 The force exerted by a jet of water on a single moving plate is not practically 

feasible 

 For  Jet of Water on a Series of Vanes, 𝜂 =
2𝑢 𝑉−𝑢

𝑉2   and 𝜂𝑚𝑎𝑥 = 500 0  

 For a radial curved vane, the radius of the vane at inlet and outlet is different and 

hence the tangential velocities of the radial vane at inlet and outlet will not be 

equal 

 For  a Series of Radial Curved Vanes ,𝜂 =
2 [𝑉𝑤1 𝑢1+𝑉𝑤2𝑢2] 

𝑉1
2  
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Introduction to Hydraulic Machines 

 Hydraulic machines are those machines which convert either hydraulic 

energy ( energy possessed by water) into mechanical energy( which is 

further converted into electrical energy) or mechanical energy into 

hydraulic energy 

 The hydraulic machines, which convert the hydraulic energy into 

mechanical energy, are called turbines , while the hydraulic machines 

which convert the mechanical energy into hydraulic energy are called 

pumps  



Turbines 

 Turbines are defined as the hydraulic machines which convert hydraulic 

energy into mechanical energy 

 This mechanical energy is used in running an electric generator which is 

directly coupled to the shaft of the turbine 

 Thus the mechanical energy is converted into electrical energy 

 The electric power which is obtained from the hydraulic energy(energy 

of water) is known as Hydroelectric Power 

 



Gross Head and Net Head 

Gross Head(𝑯𝒈) 

 The difference between the head race level 

and tail race level when no water is flowing  

Net Head or Effective Head 

 The head available at the inlet of the turbine 

 When water is flowing from head race to the 

turbine, a loss of head(𝑕𝑓) due to friction 

between the water and penstocks occurs 



Gross Head and Net Head(Cont…) 

 Net head on turbine is  H= 𝐻𝑔 − 𝑕𝑓 

 𝑕𝑓 =
4𝑓𝐿𝑉2

𝐷𝑋2𝑔
 

Where,  V= Velocity of flow in penstock 

L= Length of penstock 

D= Diameter of penstock 



Efficiencies of a Turbine 

 The following are the important efficiencies of a turbine 

Hydraulic Efficiency,𝜂𝑕 

Mechanical Efficiency, 𝜂𝑚 

Volumetric  Efficiency, 𝜂𝑣 

Overall  Efficiency, 𝜂𝑜 



Hydraulic Efficiency,ηh 

ηh =
𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑟𝑢𝑛𝑛𝑒𝑟

𝑃𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡
=

𝑅. 𝑃

𝑊. 𝑃
 

 The power at the inlet of the turbine is more and this power goes on 

decreasing as the water flows over the vanes of the turbine due to 

hydraulic losses as the vanes are not smooth 

R.P= Power delivered to runner (Runner Power) 

W.P= Power supplied at inlet of the turbine(Water Power)=
𝑊𝑋𝐻

1000
kW 



Hydraulic Efficiency,𝜼𝒉(Cont…) 
 
Where,   W= Weight of water striking the vanes of the turbine per 

second=𝜌𝑔𝑋𝑄 

W.P=
𝜌𝑔𝑋𝑄 𝑋𝐻

1000
kW 

ηh =
𝑊

𝑔

𝑉𝑤1+𝑉𝑤2 𝑋𝑢

1000
 kW     ……..For Pelton Turbine 

ηh =
𝑊

𝑔

𝑉𝑤1𝑢1+𝑉𝑤2𝑢2

1000
 kW     ……..For a Radial flow Turbine 



Mechanical Efficiency,𝜼𝐦 
 

𝜂m =
𝑃𝑜𝑤𝑒𝑟 𝑎𝑡 𝑡𝑕𝑒 𝑠𝑕𝑎𝑓𝑡 𝑜𝑓 𝑡𝑕𝑒 𝑡𝑢𝑟𝑏𝑖𝑛𝑒(𝑆. 𝑃 𝑜𝑟 𝐵. 𝑃)

𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑡𝑕𝑒 𝑟𝑢𝑛𝑛𝑒𝑟(𝑅. 𝑃)
 

 Due to mechanical losses, the power available at the shaft of the turbine 

is less than the power delivered to the runner of a turbine 

Where, S.P= Shaft Power 

B.P= Brake Power 



Volumetric Efficiency,𝜼𝐯 
 
 The volume of the water striking the runner of a turbine is slightly less 

than the volume of the water supplied to the turbine 

 Some of the volume of the water is discharged to the tail race without 

striking the runner of the turbine 

𝜂𝑣 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑠𝑡𝑟𝑖𝑘𝑖𝑛𝑔 𝑡𝑕𝑒 𝑟𝑢𝑛𝑛𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡𝑕𝑒 𝑡𝑢𝑟𝑏𝑖𝑛𝑒
 



Overall Efficiency,𝜼𝐨 

𝜂𝑜 =
𝑃𝑜𝑤𝑒𝑟 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡𝑕𝑒 𝑠𝑕𝑎𝑓𝑡 𝑜𝑓 𝑡𝑕𝑒 𝑡𝑢𝑟𝑏𝑖𝑛𝑒(𝑆𝑕𝑎𝑓𝑡 𝑃𝑜𝑤𝑒𝑟)

𝑃𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑡 𝑡𝑕𝑒 𝑖𝑛𝑙𝑒𝑡 𝑜𝑓 𝑡𝑕𝑒 𝑡𝑢𝑟𝑏𝑖𝑛𝑒(𝑊𝑎𝑡𝑒𝑟 𝑃𝑜𝑤𝑒𝑟)
 

𝜂𝑜 =
𝑆. 𝑃

𝑊. 𝑃
=

𝑆. 𝑃

𝑊. 𝑃
𝑋

𝑅. 𝑃

𝑅. 𝑃
 

𝜂𝑜 =
𝑆.𝑃

𝑅.𝑃
𝑋

𝑅.𝑃

𝑊.𝑃
= 𝜂𝑚X𝜂𝑕 



Classification of Hydraulic Turbines 

According to the type of energy at inlet 

Impulse Turbine Reaction Turbine 



Classification of Hydraulic 
Turbines(Cont...) 

According to the direction of flow through runner 

Tangential Flow 
Turbine 

Radial Flow Turbine 
Axial Flow 

Turbine 
Mixed Flow 

Turbine 



Classification of Hydraulic 
Turbines(Cont..) 

According to the head at the inlet of turbine 

High Head Turbine 
Medium Head  

Turbine 
Low Head 

Turbine 



Classification of Hydraulic 
Turbines(Cont…) 

According to the specific speed of the turbine 

Low Specific 
Speed Turbine 

Medium Specific 
Speed Turbine 

High Specific 
Speed Turbine 



Classification of Hydraulic 
Turbines(Cont…) 
 If at the  inlet of the turbine , the energy available is only K.E , the turbine 

is known as Impulse Turbine 

 As the water flows over the vanes, the pressure is atmospheric from inlet 

to outlet of the turbine 

 If at the  inlet of the turbine , the water possesses K.E as well as pressure 

energy, the turbine is known as Reaction Turbine 

 As the water flows through the runner, the water is under pressure and 

pressure energy goes on changing into K.E 



Classification of Hydraulic 
Turbines(Cont…) 
 If the water flows along the tangent of the runner, the turbine is known as 

Tangential Flow Turbine 

 If the water flows in the radial direction through the runner, the turbine is 

called Radial Flow Turbine 

 If the water flows from outwards to inwards radially, the turbine is 

known as Inward Radial Flow Turbine 

 If the water flows radially from inwards to outwards, the turbine is 

known as Outward  Radial Flow Turbine 



Classification of Hydraulic 
Turbines(Cont…) 
 If the water flows through the runner along the direction parallel to the 

axis of rotation of the runner, the turbine is called Axial Flow Turbine 

 If the water flows through the runner in the radial direction but leaves in 

the direction parallel to axis of rotation of the runner, the turbine is 

called Mixed Flow Turbine 



 Hydraulic machines are defined as those machines which convert either hydraulic 

energy into mechanical energy or mechanical energy into hydraulic energy 

 Turbines are defined as the hydraulic machines which convert hydraulic energy 

into mechanical energy 

 Gross Head is  difference between the head race level and tail race level when no 

water is flowing  

 Net Head or Effective Head is the head available at the inlet of the turbine 

 

Summary 
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Pelton Wheel or Turbine 
 The pelton turbine is a tangential flow impulse turbine 

 The water strikes the bucket along the tangent of the runner 

 The energy available at the inlet of the turbine is only K.E 

 The pressure at the inlet and outlet of the turbine is atmospheric 

 This turbine is used for high heads 

 The water from the reservoir flows 

through the penstocks at the outlet of 

which a nozzle is fitted 



Pelton Wheel or Turbine(Cont…) 

 At the outlet of the nozzle, the water comes out in the form of a jet and 

strikes the buckets(Vanes) of the runner 

 The main parts of the pelton turbine are: 

1. Nozzle and flow regulating arrangement(Spear) 

2. Runner and buckets 

3. Casing  

4. Breaking Jet 



Pelton Wheel or Turbine(Cont…) 
Nozzle and flow regulating arrangement 

 The amount of water striking the buckets(Vanes) of the runner is 

controlled by providing a spear in the nozzle  

 The spear is a conical needle which is 

operated either by a hand wheel or 

automatically in the axial direction 

 When spear is pushed forward into the 

nozzle the amount of water striking the 

runner is reduced 



Pelton Wheel or Turbine(Cont…) 
Runner with Buckets 

 It consists of a circular disc on the periphery of which a number of 

buckets evenly spaced are fixed 

 The shape of the buckets is of a double 

hemispherical cup or bowl 

 Each bucket is divided into two 

symmetrical parts by a dividing wall which 

is known as splitter 

 The jet of water strikes on the splitter 



Pelton Wheel or Turbine(Cont…) 

Runner with Buckets: 

 The splitter divides the jet into two 

equal parts and the jet comes out at 

the outer edge of the bucket 

 The buckets are shaped in such a way 

that the jet gets deflected through 

1600 to 1700 



Pelton Wheel or Turbine(Cont…) 

Casing: 

 The function of the casing is to 

prevent the splashing of the 

water and to discharge water to 

tail race 

 It also acts as safeguard against 

accidents 



Pelton Wheel or Turbine(Cont…) 
Breaking Jet: 

 When the nozzle is completely closed by moving the spear in the forward 

direction, the amount of water striking the runner is zero 

 But the runner due to inertia goes on revolving for a long time 

 
 To stop the runner in a short time, a small nozzle is provided which 

directs the jet of water on the back of the vanes 

 This jet of water is called breaking jet 



Velocity Triangles and Work done for 
Pelton Wheel 
 The jet of water from the nozzle strikes 

the bucket at the splitter, which splits 

up the jet into two parts 

 These parts of the jet, glides over the 

inner surfaces and comes out at the 

outer edge 

 Let H= Net head acting on the Pelton 

wheel= 𝐻𝑔 − 𝑕𝑓 



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 

Where 𝐻𝑔 =Gross head and 𝑕𝑓 =
4𝑓𝐿𝑉2

𝐷∗𝑋2𝑔
  

𝐷∗ =Dia. Of Penstock,  

N= Speed of the wheel in r.p.m,  

D= Diameter of the wheel ,     

d= Diameter of the jet,  

𝑉1 =Velocity of jet at inlet= 2𝑔𝐻 



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 
 u= 𝑢1 = 𝑢2 =

𝜋𝐷𝑁

60
 

 The velocity triangle at inlet will be a straight line where 

𝑉𝑟1 = 𝑉1 − 𝑢1 = 𝑉1 − 𝑢 

𝑉𝑤1 = 𝑉1, 𝛼 = 00 and θ = 00 



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 
 From the velocity triangle at outlet , we have 

𝑉𝑟2 = 𝑉𝑟1 and 𝑉𝑤2
= 𝑉𝑟2𝑐𝑜𝑠∅ − 𝑢2 

 The force exerted by the jet of water in the 

direction of motion is given 

𝐹𝑥 = 𝜌𝑎𝑉1[𝑉𝑤1 + 𝑉𝑤2] 

 As the angle 𝛽 is an acute angle, +ve sign 

should be taken 



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 
 The mass of water striking is 𝜌𝑎𝑉1 and not 𝜌𝑎𝑉𝑟1 

a= Area of jet=
𝜋

4
𝑑2 

 Now work done by the jet on the runner per second 

= 𝐹𝑥 𝑋𝑢 = 𝜌𝑎𝑉1 𝑉𝑤1 + 𝑉𝑤2 𝑋𝑢 Nm/s 

 Power given to the runner by the jet 

=
𝜌𝑎𝑉1 𝑉𝑤1+𝑉𝑤2 𝑋𝑢 

1000
kW 



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 
 Work done/s per unit weight of water striking/s 

=
𝜌𝑎𝑉1 𝑉𝑤1

+ 𝑉𝑤2
𝑋𝑢

𝑊𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑖𝑘𝑖𝑛𝑔/𝑠
 

=
𝜌𝑎𝑉1 𝑉𝑤1 + 𝑉𝑤2 𝑋𝑢

𝜌𝑎𝑉1𝑋𝑔
=

1

𝑔
𝑉𝑤1 + 𝑉𝑤2 𝑋𝑢 

 The energy supplied to the jet at inlet is in the form of K.E =
1

2
𝑚𝑉2 

K.E of jet per second =
1

2
(𝜌𝑎𝑉1)𝑉1

2 



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 

Hydraulic Efficiency, 𝜼𝒉 =
𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝐾.𝐸 𝑜𝑓 𝑗𝑒𝑡 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
 

=
𝜌𝑎𝑉1 𝑉𝑤1 + 𝑉𝑤2 𝑋𝑢

1
2

(𝜌𝑎𝑉1)𝑉1
2

=
2 𝑉𝑤1 + 𝑉𝑤2 𝑋𝑢

𝑉1
2  

 Now       𝑉𝑤1 = 𝑉1, 𝑉𝑟1 = 𝑉1 − 𝑢1 = (𝑉1 − 𝑢) 

𝑉𝑟2 = (𝑉1 − 𝑢) 

𝑉𝑤2 = 𝑉𝑟2𝑐𝑜𝑠𝜙 − 𝑢2 = 𝑉𝑟2𝑐𝑜𝑠𝜙 − 𝑢 = (𝑉1 − 𝑢)𝑐𝑜𝑠𝜙 − 𝑢 



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 
 Substituting the values of 𝑉𝑤1 and 𝑉𝑤2 in 𝑒𝑞𝑛( 

2 𝑉𝑤1+𝑉𝑤2 𝑋𝑢

𝑉1
2 ) 

𝜼𝒉 =
2 𝑉1 + 𝑉1 − 𝑢 𝑐𝑜𝑠𝜙 − 𝑢 𝑋𝑢

𝑉1
2  

=
2 𝑉1 − 𝑢 + 𝑉1 − 𝑢 𝑐𝑜𝑠𝜙 𝑋𝑢

𝑉1
2 =

2 𝑉1 − 𝑢 1 + 𝑐𝑜𝑠𝜙 𝑢

𝑉1
2  

The efficiency will be maximum for the given value of 𝑉1 when 



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 

𝑑

𝑑𝑢
𝜂𝑕 = 0 

𝑑

𝑑𝑢

2𝑢 𝑉1 − 𝑢 (1 + 𝑐𝑜𝑠𝜙)

𝑉1
2 = 0 

 (1 + 𝑐𝑜𝑠𝜙)

𝑉1
2

𝑑

𝑑𝑢
2𝑢𝑉1 − 2𝑢2 = 0 

𝑑

𝑑𝑢
2𝑢𝑉1 − 2𝑢2 = 0   

 1+𝑐𝑜𝑠𝜙

𝑉1
2 ≠ 0  



Velocity Triangles and Work done for 
Pelton Wheel(Cont…) 

2𝑉1 − 4𝑢 = 0, u= 
𝑉1

2
 

 Thus hydraulic efficiency of pelton wheel will be maximum when the 

velocity of the wheel is half the velocity of the jet of the water at inlet 

𝜼𝒉,𝒎𝒂𝒙 =
2 𝑉1−

𝑉1
2

1+𝑐𝑜𝑠𝜙 𝑋
𝑉1
2

𝑉1
2   

𝜼𝒉,𝒎𝒂𝒙 =
2

𝑉1
2

1+𝑐𝑜𝑠𝜙
𝑉1
2

𝑉1
2 = 

1+𝑐𝑜𝑠𝜙

2
 



Points to be Remembered for Pelton 
Wheel 
(i) The velocity of the jet at inlet 𝑉1 = 𝐶𝑣 2𝑔𝐻 

Where 𝐶𝑣 =Co-efficient of velocity= 0.98 or 0.99, H= Net head on turbine 

(ii) The velocity of wheel u= 𝜙 2𝑔𝐻 

Where 𝜙 = Speed ratio= o.43 to 0.48 

(iii) The angle of deflection of the jet through buckets is taken at 1650 if no 

angle of deflection is given 



Points to be Remembered for Pelton 
Wheel 
(iv) The mean diameter of pitch diameter  D of the pelton wheel is given by 

𝑢 =
𝜋𝐷𝑁

60
 or D=

60𝑢

𝜋𝑁
 

(v) Jet Ratio(m): Defined as the ratio of the pitch diameter(D) of the pelton 

wheel to the diameter of the jet(d) , m= 
𝐷

𝑑
(= 12 𝑓𝑜𝑟 𝑚𝑜𝑠𝑡 𝑐𝑎𝑠𝑒𝑠) 

(vi) Number of buckets on a runner  Z=15+
𝐷

2𝑑
= 15 + 𝑜. 5m 

(vii) Number of Jets: It is obtained by dividing the total rate of flow through 

the turbine by the rate of flow of water through a single jet 



Problem:1 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Design of Pelton Wheel 

 Design of pelton wheel means the following data is to be determined 

1. Diameter of the jet(d) 

2. Diameter of wheel(D) 

3. Width of the buckets which is =5Xd 

4. Depth of the buckets on the wheel=1.2Xd 

5. Number of buckets on the wheel 

Size of buckets means the width and depth of the buckets 



Problem:3 



Problem:3(Cont…) 



Problem:3(Cont…) 



Problem:3(Cont…) 



 The pelton turbine is a tangential flow impulse turbine 

 The main parts of the pelton turbine are: Nozzle and flow regulating 

arrangement(Spear), Runner and buckets, Casing , Breaking Jet 

 Now work done by the jet on the runner per second = 𝜌𝑎𝑉1 𝑉𝑤1 + 𝑉𝑤2 𝑋𝑢 Nm/s 

 Power given to the runner by the jet =
𝜌𝑎𝑉1 𝑉𝑤1+𝑉𝑤2 𝑋𝑢 

1000
kW 

 𝜼𝒉 =
2 𝑉1−𝑢 1+𝑐𝑜𝑠𝜙 𝑢

𝑉1
2  

 𝜼𝒉,𝒎𝒂𝒙 = 
1+𝑐𝑜𝑠𝜙

2
 

Summary 
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Introduction to Radial Flow Reaction 
Turbines 
 Water flows in the radial direction 

 Water may flow radially from outwards to inwards( i.e., towards the axis 

of rotation) or from inwards to outwards 

 If water flows from outwards to inwards through the runner, the turbine 

is known as inward radial flow turbine 

 If the water flows from inwards to outwards, the turbine is known as 

outward radial flow turbine 



Introduction to Radial Flow Reaction 
Turbines(Cont…) 
 Reaction turbine means that the water at the inlet of the turbine 

possesses K.E as well as pressure energy 

 As the water flows through the runner, a part of pressure energy goes on 

changing into K.E 

 



Main parts of the Radial Flow Reaction 
Turbine 

1.Casing 

2.Guide Mechanism 

3.Runner 

4.Draft tube 



Main parts of the Radial Flow Reaction 
Turbine(Cont…) 
1. Casing: 

 Casing and runner are always full of 

water 

 Spiral in shape , area of cross section 

goes on decreasing gradually 

 Casing completely surrounds the runner 

of the turbine 

 Made of concrete, cast steel or plate steel 



Main parts of the Radial Flow Reaction 
Turbine(Cont…) 
2. Guide Mechanism: 

 Consists of a stationary circular wheel all 

round the runner of the turbine 

 The stationary guide vanes are fixed on 

the guide mechanism 

 The guide vanes allow the water to strike 

the vanes fixed on the runner without 

shock at inlet 



Main parts of the Radial Flow Reaction 
Turbine(Cont…) 
3. Runner: 

 It is a circular wheel on which a series of 

radial curved vanes are fixed 

 The radial curved vanes are so shaped 

that the water enters and leaves the 

runner without shock 

 Made of cast steel, cast iron or stainless 

steel 



Main parts of the Radial Flow Reaction 
Turbine(Cont…) 
4. Draft -tube: 

 The pressure at the exit of the runner of a reaction turbine is generally 

less than atmospheric pressure 

 The water at exit cannot be directly discharged to the tail race 

 A tube or pipe of gradually increasing area is used for discharging water 

from the exit of the turbine to the tail race 

 This tube of increasing area is called draft tube 



Inward Radial Flow Turbine 
 The water from the casing enters the 

stationary guiding wheel 

 The guiding wheel consists of guide 

vanes which direct the water to enter the 

runner 

 The water flows over the moving vanes 

in the inward radial direction and is 

discharged at the inner diameter of the 

runner 



Inward Radial Flow Turbine(Cont…) 

 The work done per second on the runner by water is given by: 

= 𝜌𝑎𝑉1 𝑉𝑤1𝑢1+𝑉𝑤2𝑢2  

= 𝜌𝑄 𝑉𝑤1𝑢1+𝑉𝑤2𝑢2  

Where 𝑢1(𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑤𝑕𝑒𝑒𝑙 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡) =
𝜋𝐷1𝑋𝑁

60
, 𝐷1 = Outer dia. 

of runner 

𝑢2(𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑤𝑕𝑒𝑒𝑙 𝑎𝑡 𝑜𝑢𝑡𝑙𝑒𝑡) =
𝜋𝐷2𝑋𝑁

60
, 𝐷2 = Inner dia. of 

runner, N= Speed of the turbine in r.p.m 



Inward Radial Flow Turbine(Cont…) 
 The work done per second per unit weight of water per second 

=
𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝑊𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑖𝑘𝑖𝑛𝑔 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
 

=
𝜌𝑄 𝑉𝑤1𝑢1+𝑉𝑤2𝑢2

𝜌𝑄𝑔
 = 

1

𝑔
𝑉𝑤1𝑢1+𝑉𝑤2𝑢2 -----(1) 

 Eq(1) is known as Euler’s Equation or Fundamental Equation  of 

hydrodynamics machines 

 In eq(1) +ve sign is taken if angle 𝛽 is an acute angle, -ve sign is taken if 

angle 𝛽 is an obtuse angle 



Inward Radial Flow Turbine(Cont…) 

 If 𝛽 = 900, then 𝑉𝑤1 = 0 and word done per second per unit weight 

striking/s become as=
1

𝑔
𝑉𝑤1𝑢1 

Hydraulic Efficiency,𝜼𝒉 =
𝑹.𝑷

𝑾.𝑷
=

𝑾

𝟏𝟎𝟎𝟎𝒈
𝑉𝑤1𝑢1+𝑉𝑤2𝑢2

𝑾𝑿𝑯

𝟏𝟎𝟎𝟎

=
𝑉𝑤1𝑢1+𝑉𝑤2𝑢2

𝒈𝑯
 

Where R.P= Runner power i.e power delivered by water to the runne 

W.P= Water power 

If the discharge is radial at outlet, then 𝑉𝑤2 = 0,   𝜼𝒉=
𝑉𝑤1𝑢1

𝒈𝑯
 



Degree of Reaction(R) 

𝑅 =
𝐶𝑕𝑎𝑛𝑔𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡𝑕𝑒 𝑟𝑢𝑛𝑛𝑒𝑟

𝐶𝑕𝑎𝑛𝑔𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡𝑕𝑒 𝑟𝑢𝑛𝑛𝑒𝑟
 

𝑅 = 1 −
(𝑉1

2 − 𝑉1
2)

2𝑔𝐻𝑒
 

Where 𝐻𝑒 =Change of total energy per unit weight inside the runner 

𝐻𝑒 =
1

𝑔
[𝑉𝑤1

𝑢1+𝑉𝑤2𝑢2] 

 



Degree of Reaction(Cont…) 
Value of R for Pelton Turbine and other Actual Reaction Turbines 

(i) For a Pelton turbine 

𝑢1 = 𝑢2 and 𝑉𝑟2 = 𝑉𝑟1 

𝑅 = 1 −
𝑉1

2 − 𝑉2
2

𝑉1
2 − 𝑉2

2 = 1 − 1 = 0 

(ii) For an actual reaction turbine, the angle 𝛽 = 900, so that the loss of K.E 

at outlet is minimum (i.e., 𝑉2 is minimum) 

Hence in outlet velocity triangle, 𝑉𝑤2 = 0, 𝑅 = 1 −
𝑐𝑜𝑡𝛼

2(𝑐𝑜𝑡𝛼−𝑐𝑜𝑡𝜃)
 



Important Definitions for Reaction 
Radial Flow Turbine  

The following terms are generally used in case of reaction radial flow 

turbines : 

(i) Speed Ratio: =
𝑢1

2𝑔𝐻
 , 𝑢1 = Tangential velocity of wheel at inlet 

(ii) Flow Ratio: The ratio of the velocity of flow at inlet(𝑉𝑓1
) to the velocity 

given 2𝑔𝐻 , Flow ration=
𝑉𝑓1

2𝑔𝐻 
,  H= head on turbine 



Important Definitions for Reaction 
Radial Flow Turbine(Cont…) 
(iii) Discharge of the turbine (Q) = 𝜋𝐷1𝐵1𝑋𝑉𝑓1

= 𝜋𝐷2𝐵2𝑋𝑉𝑓2
 

Where 𝐷1 =Diameter of runner at inlet, 𝐵1 =Width of runner at inlet 

𝑉𝑓1
=Velocity of flow at inlet,   𝐷2, 𝐵2,𝑉𝑓2

=Corresponding values at outlet 

 If the thickness of vanes are taken into consideration, then area through 

which flow takes place is given by (𝜋𝐷1 − 𝑛𝑋𝑡) 

Where n= number of vanes on runner and t= thickness of each vane 

The discharge Q=(𝜋𝐷1 − 𝑛𝑋𝑡)𝑋𝐵1𝑋𝑉𝑓1
 



Important Definitions for Reaction 
Radial Flow Turbine(Cont…) 
(iv) The Head(H) on the turbine:  𝐻 =

𝑝1

𝜌𝑋𝑔
+

𝑉1
2

2𝑔
 

(v) Radial Discharge:   This means the angle made by absolute velocity 

with the tangent on the wheel is(𝛽 =) 900 and the component of the whirl 

velocity (𝑉𝑤1 =)is zero. 

(vi) If there is no loss of energy when water flows through the vanes then we 

have     H−
𝑉2

2

2𝑔
=

1

𝑔
[𝑉𝑤1

𝑢1+𝑉𝑤2𝑢2] 



Problem:1 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



 If water flows from outwards to inwards through the runner, the turbine is known 

as outward radial flow turbine 

 If the water flows from inwards to outwards, the turbine is known as outward 

radial flow turbine 

 The work done per second per unit weight of water per second= 
1

𝑔
𝑉𝑤1𝑢1+𝑉𝑤2𝑢2  

 Hydraulic Efficiency, 𝜼𝒉=
𝑉𝑤1𝑢1+𝑉𝑤2𝑢2

𝒈𝑯
 

 Degree of Reaction 𝑅 = 1 −
(𝑉1

2−𝑉1
2)

2𝑔𝐻𝑒
 

Summary 
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Outward Radial Flow Reaction Turbine
➢ Water from casing enters the stationary

guide wheel

➢ The guide wheel consists of guide vanes

which direct water to enter the runner which

is around the stationary guide wheel

➢ The water flows through the vanes of the

runner in the outward radial direction and is

discharged at the outer diameter of the

runner



Outward Radial Flow Reaction 
Turbine(Cont…)
➢ The inner diameter of the runner is inlet and

outlet diameter is the outlet

➢ In this case as inlet of the runner is at the

inner diameter of the runner, the tangential

velocity at inlet will be less than that of at

outlet i.e

𝑢1 < 𝑢2 as 𝐷1 < 𝐷2



Problem:1



Problem:1(Cont…)



Problem:1(Cont…)



Problem:1(Cont…)



Problem:1(Cont…)



Problem:1(Cont…)



Francis Turbine

➢ The inward flow reaction turbine having radial discharge at outlet is

known as Francis Turbine

➢ In the modern Francis turbine, the water enters the runner of the turbine

in the radial direction at outlet and leaves in the axial direction at the

inlet of the runner

➢ Thus the modern Francis turbine is a mixed flow type turbine

➢ The velocity triangle at inlet and outlet of the Francis turbine are drawn

in the same way as in case of inward flow reaction turbine



Francis Turbine(Cont…)

➢ The discharge is radial at outlet, the velocity of whirl at outlet( i.e 𝑉𝑤2)

will be zero

➢ Hence the work done by water on the runner per second will be

= 𝜌𝑄[𝑉𝑤1𝑢1]

➢ And work done per second per unit weight of water striking/s=
1

𝑔
[𝑉𝑤1𝑢1]

➢ Hydraulic efficiency will be given by , 𝜂ℎ =
𝑉𝑤1𝑢1

𝑔𝐻



Important Relations for Francis Turbines

1. The ratio of width of the wheel to its diameter is given as n=
𝐵1

𝐷1
. The

value of n varies from 0.1 to 0.4

2. The flow ratio=
𝑉𝑓1
2𝑔𝐻

and varies from 0.15 to 0.3

3. The speed ratio=
𝑢1

2𝑔𝐻
varies from 0.6 to 0.9



Problem:2



Problem:2(Cont…)



Problem:2(Cont…)



Problem:2(Cont…)



Problem:2(Cont…)



Problem:2(Cont…)



❑ For Outward Radial Flow Reaction Turbine , the water flows through the vanes of the

runner in the outward radial direction and is discharged at the outer diameter of

the runner

❑ For Outward Radial Flow Reaction Turbine , 𝑢1 < 𝑢2 as 𝐷1 < 𝐷2

❑ The inward flow reaction turbine having radial discharge at outlet is known as

Francis Turbine

❑ For Francis turbine, the flow ratio =
𝑉𝑓1
2𝑔𝐻

and varies from 0.15 to 0.3

❑ For Francis turbine, the speed ratio=
𝑢1

2𝑔𝐻
varies from 0.6 to 0.9

Summary
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Axial Flow Reaction Turbine 
 Water flows parallel to the axis of the 

rotation of the shaft, the turbine is 

known as axial flow turbine  

 If the head at the inlet of the turbine is 

the sum of pressure energy and kinetic 

energy and during the flow of water 

through runner a part of pressure 

energy is converted into K.E is known 

as reaction turbine 



Axial Flow Reaction Turbine(Cont…) 
 The shaft of the turbine is vertical 

 The lower end of the shaft is made larger 

which is known as ‘hub’ or ‘boss’ 

 The vanes are fixed on the hub and hence 

hub acts as a runner for axial flow reaction 

turbine 

 The following are the important type of 

axial flow reaction turbines 

1. Propeller Turbine    2. Kaplan Turbine 



Axial Flow Reaction Turbine(Cont…) 

 When the vanes are fixed to the hub and 

they are not adjustable, the turbine is 

known as propeller turbine 

 But if the vanes on the hub are adjustable, 

the turbine is known as a Kaplan Turbine 

 Kaplan turbine is suitable where a large 

quantity of water at low head is available 



Axial Flow Reaction Turbine(Cont…) 

 The main parts of a Kaplan 

turbine are: 

1. Scroll casing 

2. Guide vanes mechanism 

3. Hub with vanes or runner of 

the turbine 

4. Draft tube 



Axial Flow Reaction Turbine(Cont…) 

 The water from penstock enters the scroll casing and then moves to the 

guide vanes 

 From the guide vanes, the water turns through 900 and flows axially 

through the runner 
 The discharge through the runner is obtained as  

𝑄 =
𝜋

4
𝐷0

2 − 𝐷𝑏
3 𝑋𝑉𝑓1

 

Where 𝐷0 =Outer diameter of the runner 

, 𝐷𝑏=Diameter of hub ,𝑉𝑓1
=Velocity of flow at inlet  



Some Important Point for Propeller 
(Kaplan Turbine) 
1. The peripheral velocity at inlet and outlet are equal 

𝑢1 = 𝑢1 =
𝜋𝐷0𝑁

60
, wherer 𝐷0 =Outer dia. of runner 

2. Velocity of flow at inlet and outlet are equal 

𝑉𝑓1
= 𝑉𝑓2

 

3. Area of flow at inlet=Area of flow at outlet 

=
𝜋

4
𝐷0

2 − 𝐷𝑏
2  



Problem:1 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Water flows parallel to the axis of the rotation of the shaft, the turbine is 

known as axial flow turbine  

When the vanes are fixed to the hub and they are not adjustable, the 

turbine is known as propeller turbine 

 If the vanes on the hub are adjustable, the turbine is known as a Kaplan 

Turbine 

 The discharge through the runner is obtained as  𝑄 =
𝜋

4
𝐷0

2 − 𝐷𝑏
3 𝑋𝑉𝑓1

 

 

Summary 
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Draft-Tube 

 The draft-tube is a pipe of gradually increasing area which connects the 

outlet of the runner to the tail race 

 It is used for discharging water from the exit of the turbine to the tail race 

 The draft tube  

1. Discharges water  

2. It permits a negative head to be established at the outlet of the runner 

and thereby increase the net head on the turbine 



Draft-Tube(Cont…) 

3. It converts a large proportion of the K.E rejected at the outlet of the 

turbine into useful pressure energy. Without draft tube, K.E rejected  at 

the outlet of the turbine will go waste to the tail race 

 Hence by using draft-tube, the net head on the turbine increases 

 The turbine develops more power and also the efficiency of the turbine 

increases 

 If a reaction turbine is not fitted with a draft –tube, the pressure at the 

outlet of the runner will be equal to atmospheric pressure 



Draft-Tube(Cont…) 

 The water from the outlet of the runner will discharge freely into the tail 

race 

 The net head on the turbine will be less than that of a reaction turbine 

fitted with a draft-tube 

 Without a draft tube, the K.E rejected at the outlet of the runner will go 

waste to the tail race 

 



Types of Draft-Tubes 

Types of Draft-Tubes 

1. Conical 
Draft-Tubes 

2. Simple 
Elbow Tubes 

3. Moody 
Spreading 

Tubes  

4.Elbow Draft- 
Tubes with 

Circular Inlet 
and 

Rectangular 
Outlet 



Types of Draft-Tubes(Cont…) 



Draft-Tube Theory 

 Let 𝐻𝑠 = Vertical height of draft tube 

above the tail race 

y= Distance of bottom of draft tube from tail 

race 

 Applying bernoulli’s equation to inlet 

(section 1-1) and outlet(section 2-2) of 

the draft tube  

 Taking section 2-2 as the datum line 



Draft-Tube Theory(Cont…) 

𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝐻𝑠 + 𝑦 =

𝑝2

𝜌𝑔
+

𝑉2
2

2𝑔
+ 0 + 𝑕𝑓………(1) 

 Where 𝑕𝑓 =loss of energy between section 1-1 

and  2-2 

But  
𝑝2

𝜌𝑔
=Atmospheric pressure +y 

𝑝2

𝜌𝑔
=

𝑝𝑎

𝜌𝑔
+ 𝑦 

Substituting 
𝑝2

𝜌𝑔
 value in equation (1) 



Draft-Tube Theory(Cont…) 

𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝐻𝑠 + 𝑦 =

𝑝𝑎

𝜌𝑔
+ 𝑦 +

𝑉2
2

2𝑔
+ 𝑕𝑓 

𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝐻𝑠 =

𝑝𝑎

𝜌𝑔
+

𝑉2
2

2𝑔
+ 𝑕𝑓 

𝑝1

𝜌𝑔
=

𝑝𝑎

𝜌𝑔
− 𝐻𝑠 −

𝑉1
2

2𝑔
−

𝑉2
2

2𝑔
− 𝑕𝑓  



Efficiency of Draft-Tube 

𝜂𝑑 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑕𝑒𝑎𝑑 𝑖𝑛𝑡𝑜 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑕𝑒𝑎𝑑

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑕𝑒𝑎𝑑 𝑎𝑡 𝑡𝑕𝑒 𝑖𝑛𝑙𝑒𝑡 𝑜𝑓 𝑑𝑟𝑎𝑓𝑡 𝑡𝑢𝑏𝑒
 

Let  𝑉1 =Velocity of water at inlet of draft tube 

𝑉2 =Velocity of water at outlet of draft tube 

𝑕𝑓 =Loss of head in the draft tube 

 Theoretical conversion of kinetic head into pressure head in draft 

tube=
𝑉1

2

2𝑔
−

𝑉2
2

2𝑔
 



Efficiency of Draft-Tube(Cont…) 

 Actual conversion of kinetic head into pressure head =
𝑉1

2

2𝑔
−

𝑉2
2

2𝑔
− 𝑕𝑓 

𝜂𝑑 =

𝑉1
2

2𝑔
−

𝑉2
2

2𝑔
− 𝑕𝑓

𝑉1
2

2𝑔

 



Problem:1 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



Problem:2(Cont…) 



 The draft-tube is a pipe of gradually increasing area which connects the outlet of 

the runner to the tail race 

 Without a draft tube, the K.E rejected at the outlet of the runner will go waste to 

the tail race 

 Efficiency of Draft-Tube 𝜂𝑑 =

𝑉1
2

2𝑔
−

𝑉2
2

2𝑔
−𝑕𝑓

𝑉1
2

2𝑔

 

 

Summary 
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Unit Quantities 

 In order to predict the behaviour of a turbine working under varying 

conditions of head, speed, output and gate opening, the results are 

expressed in terms of quantities which may be obtained when the head 

on the turbine is reduced to unity 

 The conditions of the turbine under unit head are such that the efficiency 

of the turbine remains unaffected 



Unit Quantities(Cont…) 

The three important unit quantities 
which must be studied under unit head 

1. Unit speed 
2.Unit 

discharged  
3. Unit power 



Unit Speed( 𝑵𝒖) 

 Defined as the speed of a turbine working under a unit head( i.e under a 

head of 1 m)  

 Let, N= Speed of a turbine under a head H,   H=Head under which a 

turbine is working, u= Tangential velocity 

 The tangential velocity, absolute velocity of water and head on the turbine 

are related as  u∝ V,   where V ∝ 𝐻      

Then,  u∝ 𝐻 

 Also tangential velocity(u) =
𝜋𝐷𝑁

60
,     where D= Diameter of turbine 



Unit Speed( 𝑵𝒖)(Cont…) 
 For a given turbine, the diameter (D) is constant 

u∝ N or N∝ u or N ∝ 𝐻  

N= 𝐾1 𝐻 −−−−−− −(1) 

 Where 𝐾1 is constant of proportionality 

 If head on the turbine becomes unity, the speed becomes unit speed or 

H=1, N=𝑁𝑢 

 But  from eq(1) N= 𝐾1 𝐻 ,        𝑁𝑢 = 𝐾1 1 ⟹ 𝑁𝑢 = 𝐾1 

 Substituting in equation (1) N= 𝐾1 𝐻, N= 𝑁𝑢 𝐻 ⟹ 𝑵𝒖 =
𝑵

𝑯
 



Unit Discharge( 𝑸𝒖) 

 Defined as the discharge passing through a turbine, which is working 

under a unit head( i.e 1m)  

 Let H= Head of water on the turbine, Q= Discharge passing through 

turbine when head is H on the turbine, a=Area of flow of water 

 The discharge passing through a given turbine under a head ‘H’ is  

Q=Area of flow X Velocity 

 But for a turbine, area of flow is constant and velocity is proportional to 

𝐻  



Unit Discharge( 𝑸𝒖)(Cont…) 
𝑄 ∝Velocity ∝ 𝐻 

𝑄 = 𝐾2 𝐻-----(2) 

 Where 𝐾2 is constant of proportionality 

 If H=1, Q=𝑄𝑢, substituting in eq(2) 

𝑄𝑢 = 𝐾2 1 ⟹ 𝑄𝑢 = 𝐾2 

 Substituting in eq(2) 

𝑄 = 𝑄𝑢 𝐻 

𝑄𝑢 =
𝑄

𝐻
  



Unit Power( 𝑷𝒖) 
 Defined as the power developed by a turbine, working under a unit 

head(i.e under a head or 1 m) 

 Let    H= Head of water on the turbine, P= Power developed by the turbine  

under a head of H, Q= Discharge through turbine under a head H 

 The overall efficiency (𝜂0) =
𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 

𝑊𝑎𝑡𝑒𝑟 𝑝𝑜𝑤𝑒𝑟
=

𝑃
𝜌𝑋𝑔𝑋𝑄𝑋𝐻

1000

 

P= 𝜂0𝑋
𝜌𝑋𝑔𝑋𝑄𝑋𝐻

1000
 

P∝ 𝑄𝑋𝐻 



Unit Power( 𝑷𝒖)(Cont…) 
But Q ∝ 𝐻 

P∝ 𝐻𝑋𝐻 

P ∝ 𝐻3/2 

P= 𝐾3𝐻3/2--------(3) 

 Where 𝐾3 is constant of proportionality 

 When H=1m ,  P=𝑃𝑢 ⇒ 𝑃𝑢 = 𝐾3(1)3/2 ⇒ 𝑃𝑢 = 𝐾3 

 Substituting the 𝐾3 value in equation (3) 

P= 𝑃𝑢𝐻3/2 ⇒ 𝑃𝑢 =
𝑃

𝐻3/2 

 



Use of Unit Quantities(𝑵𝒖, 𝑸𝒖, 𝑷𝒖) 

 If a turbine is working under different heads, the behaviour of the turbine 

can be easily known from the values of the unit quantities, i.e from the 

values of unit speed, unit discharge and unit power  

 Let      𝐻1, 𝐻2…….are the heads under which a turbine works,   𝑁1, 𝑁2……. 

are the corresponding speeds,    𝑄1, 𝑄2……. Are the discharge , 

𝑃1, 𝑃2…….are the power developed by the turbine 

 But from  equations 𝑵𝒖 =
𝑵

𝑯
,    𝑄𝑢 =

𝑄

𝐻
 ,   𝑃𝑢 =

𝑃

𝐻3/2 



Use of Unit Quantities(𝑵𝒖, 𝑸𝒖, 
𝑷𝒖)(Cont…)  𝑵𝒖 =

𝑵𝟏

𝑯𝟏
=

𝑵𝟐

𝑯𝟐
 

 𝑄𝑢 =
𝑸𝟏

𝑯𝟏
=

𝑸𝟐

𝑯𝟐
,    

𝑃𝑢 =
𝑷𝟏

𝑯𝟏
𝟑/𝟐

=
𝑷𝟐

𝑯𝟐
𝟑/𝟐

 

Hence, if the speed, discharge and power developed by a turbine under a 

head are known, then by using above relations the speed, discharge and 

power developed by the same turbine under a different head can be obtained 

easily 



Problem:1 



Problem:1(Cont…) 



Problem:2 



Problem:2(Cont…) 



Problem:2(Cont…) 



 The conditions of the turbine under unit head are such that the efficiency of the 

turbine remains unaffected 

 Unit Speed( 𝑵𝒖)  can be expressed as 𝑵𝒖 =
𝑵

𝑯
 

 Unit Discharge( 𝑸𝒖) can be expressed as 𝑄𝑢 =
𝑄

𝐻
  

 Unit Power( 𝑷𝒖) can be expressed as 𝑃𝑢 =
𝑃

𝐻3/2 

 

 

 

Summary 
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Characteristic Curves of Hydraulic 
Turbines 
 With the help of these curves , the exact behaviour and performance of 

the turbine under different working conditions can be known 

 These curves are plotted from the results of the tests performed on the 

turbine under different working conditions 

 The important parameters which are varied during a test on a turbine are: 

1. Speed(N)    2. Head(H)   3. Discharge(Q)  4. Power(P)   5. Overall 

efficiency(𝜂0)   6. Gate opening 



Characteristic Curves of Hydraulic 
Turbines(Cont…) 
 The parameters speed(N), head(H) and discharge(Q) are independent 

parameters 

 Out of the three independent parameters, (N,H,Q) one of the parameter is 

kept constant(say H) and the variation of the other four parameters w.r.t 

any one of the remaining two independent variables (say N and Q)  are 

plotted and various curves are obtained 

 These curves are called characteristic curves 



Characteristic Curves of Hydraulic 
Turbines(Cont…) 
 The following are the important characteristic curves of a turbine 

1. Main Characteristic curves or Constant Head Curves 

2. Operating Characteristic Curves or Constant Speed Curves 

3. Muschel  Curves or Constant Efficiency Curves 



Main Characteristic Curves or Constant 
Head Curves 
 Main characteristic curves are obtained by maintaining a constant head 

and a constant gate opening(G.O) on the turbine 

 The speed of the turbine is varied by changing load on the turbine 

 For each value of the speed, the corresponding values of the power(P) and 

discharge (Q) are obtained 

 Then the overall efficiency(𝜂0) for each value of the speed is calculated 

 From these readings the values of unit speed(𝑁𝑢), unit power(𝑃𝑢) and 

unit discharge(𝑄𝑢) are determined 



Main Characteristic Curves or Constant 
Head Curves(Cont…) 
 Taking 𝑁𝑢 as abscissa, the 

values of 𝑄𝑢, 𝑃𝑢  and 𝜂0 are 

plotted as shown in fig 



Main Characteristic Curves or Constant 
Head Curves(Cont…) 
 By changing the gate opening, 

the values of 𝑄𝑢, 𝑃𝑢  and 𝜂0 

and 𝑁𝑢  are determined and 

taking 𝑁𝑢  as abscissa, the 

values of 𝑄𝑢, 𝑃𝑢  and 𝜂0 are 

plotted 



Operating Characteristic Curves or 
Constant Speed Curves 
 Plotted when the speed on the turbine is constant 

 In case of turbines, the head is generally constant 

 For operating characteristics N and H are constant and hence the 

variation of power and efficiency w.r.t discharge Q are plotted 

 The power curve for turbines shall not pass through the origin because 

certain amount of discharge is needed to produce power to overcome 

initial friction 



Operating Characteristic Curves or 
Constant Speed Curves(Cont…) 
 Hence the power and efficiency 

curves will be slightly away from 

the origin on the x-axis, as to 

overcome initial friction certain 

amount of discharge will be 

required 

 



Constant Efficiency Curves or Muschel 
Curves or Iso-Efficiency Curves 
 These curves are obtained from the speed vs efficiency and speed vs 

discharge curves for different gate openings 

 For a given efficiency from the 𝑁𝑢 vs 𝜂0 curves, there are two speeds 

 From the 𝑁𝑢 vs 𝑄𝑢 curves, corresponding to two values of speeds there 

are two values of discharge 

 There are two values of discharge for a particular gate opening 

 So, there are two values of speeds and two values of the discharge for a 

given gate opening 



Constant Efficiency Curves or Muschel 
Curves or Iso-Efficiency Curves(Cont…) 
 If the efficiency is maximum there is 

only one value 

 These two values of speed and two 

values of discharge corresponding to 

a particular gate opening are plotted 

 The procedure is repeated for 

different gate openings and the 

curves Q vs N  are plotted 



Constant Efficiency Curves or Muschel 
Curves or Iso-Efficiency Curves(Cont…) 
 The points having the same efficiency are 

joined 

 The curves having same efficiency are called 

iso-efficiency curves  

 These curves are helpful for determining the 

zone of constant efficiency and for predicating 

the performance of the turbine at various 

efficiencies 



Constant Efficiency Curves or Muschel 
Curves or Iso-Efficiency Curves(Cont…) 
 For plotting the iso-efficiency curves, horizontal lines representing the 

same efficiency are drawn on the  𝜂0 vs  speed curves 

 The points at which these lines cut the efficiency curves at various gate 

openings are transferred to the corresponding Q vs speed curves 

  The points having the same efficiency are then 

joined by a smooth curves 

 These smooth curves represents the iso-efficiency 

curve 



Governing of Turbines 

 Governing of a turbine is defined as the operating by which the speed of 

the turbine is kept constant under all conditions of working 

 It is done automatically by means of a governor, which regulates the rate 

of flow through the turbines according to the changing load conditions on 

the turbine 

 The speed of the generator will be constant , when the speed of the 

turbine( which is coupled to the generator) is constant 

 



Governing of Turbines(Cont…) 

 When the load on the generator decreases, the speed of the generator 

increases beyond the normal speed(constant speed) 

 Then the speed of the turbine also increases beyond the normal speed 

 If the turbine or the generator is to run at constant(normal) speed, the 

rate of water to the turbine should be decreased till the speed becomes 

normal 

 This process by which the speed of the turbine is kept constant under 

varying condition of load is called governing 



Governing of Pelton Turbine(Impulse 
Turbine) 
 Governing of pelton turbine is done by means of oil pressure governor, 

which consists of the following parts: 

1. Oil sump 

2. Gear pump also called oil pump, which is driven by the power obtained 

from turbine shaft 

3. The Servomotor also called the relay cylinder 

4. The control valve or the distribution valve or relay valve 



Governing of Pelton Turbine(Impulse 
Turbine)(Cont…) 
5. The centrifugal governor or pendulum which is driven by belt or gear 

from the turbine shaft  

6. Pipes connecting the oil sump with the control valve and control valve 

with servomotor  

7. The spear rod or needle 



Governing of Pelton Turbine(Impulse 
Turbine)(Cont…) 
 When the load on the generator 

decreases, the speed of the 

generator increases 

 The centrifugal governor, which 

is connected to the turbine main 

shaft, will be rotating at an 

increased speed 



Governing of Pelton Turbine(Impulse 
Turbine)(Cont…) 
 Due to increase in the speed of the centrifugal 

governor, the fly balls move upward due to 

the increased centrifugal force on them 

 Due to the upward movement of the fly-balls, 

the sleeve will also move upward 

 As the sleeve move up, the lever turns about 

the fulcrum and piston rod of the control 

valve moves downward 



Governing of Pelton Turbine(Impulse 
Turbine)(Cont…) 
 This closes the valve 𝑉1 and opens the valve 

𝑉1 as shown in fig 

 The piston along with piston rod and spear 

will move towards right 

 This will decrease the area of flow of water at 

the outlet of nozzle, and reduce the rate of 

flow of water to the turbine which 

consequently reduce the speed of the turbine  



Governing of Pelton Turbine(Impulse 
Turbine)(Cont…) 
 When the speed of the turbine becomes normal, the fly-balls, sleeve, lever 

and piston rod of control valve come to its normal position 

 When the load on the generator increases, the speed of the generator and 

hence of the decreases 

 The speed of the centrifugal governor also decreases and hence 

centrifugal force acting on the fly-balls also reduces 

 This brings the fly-balls in the downward direction 



Governing of Pelton Turbine(Impulse 
Turbine)(Cont…) 
 This closes the valve 𝑉2 and opens the 𝑉1 

 Piston move  along with the piston rod and spear towards left, increasing 

the area of flow of water at the outlet of the nozzle 

 This will increase the rate of flow of water to the turbine and 

consequently, the speed of the turbine will also increase, till the speed of 

the turbine becomes normal  



 Characteristic curves are plotted from the results of the tests performed on the 

turbine under different working conditions 

 The following are the important characteristic curves of a turbine 1)Main 

Characteristic curves or Constant Head Curves 2)Operating Characteristic Curves 

or Constant Speed Curves 3)Muschel  Curves or Constant Efficiency Curves 

 Governing of a turbine is defined as the operating by which the speed of the 

turbine is kept constant under all conditions of working 

 

Summary 
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Selection of Types of Turbine 

Selection of a suitable type of turbine is usually governed by  

i) Head and Specific Speed        ii) Part load Operation 



 It has been found that there is a range of head and specific speed for which 

each type of a turbine is most suitable 

Head and Specific Speed 



 A turbine with highest permissible specific speed should be chosen which 

will be cheapest and relatively small in size and high rotational speed will 

reduce the size of the generator as well as the power house 

 But the specific speed cannot be increased indefinitely because it results is 

cavitations 

 The cavitations may be avoided by installing the turbine at a lower level with 

respect to the tail race 

Head and Specific Speed(Cont…) 



 As the load deviates from the normal 

working load, the efficiency would also 

vary 

 At part load the performance of Kaplan 

and pelton turbines is better in 

comparison to that of Francis and 

Propeller turbines 

 The variability of load will influence the 

choice of type of turbine 

Part Load Operation 



 If the head lies between 150m to 300m or lies below 30m 

 For higher range of heads pelton wheel is preferable for part load operation 

in comparison to Francis turbine 

 For heads below 30m Kaplan turbine is preferable for part load operation in 

comparison to propeller turbine 

 In addition to the above factors the overall cost, which includes the initial 

cost and running cost should be considered 

 The cavitations characteristics of the turbine should be considered 

Part Load Operation(Cont…) 



 Cavitation is defined as the phenomenon of formation of vapour bubbles of a 

flowing liquid in a region, where the pressure of the liquid falls below its 

vapour pressure and the sudden collapsing of these vapour bubbles in a 

region of higher pressure 

 When the vapour bubbles collapse, a very high pressure is created 

 The metallic surfaces, above which these vapour bubbles collapse, is 

subjected to these high pressures, which cause pitting action on the surface 

Cavitation 



 Thus cavities are formed on the metallic surface and also considerable noise 

and vibrations are produced 

 When the pressure of the flowing liquid is less than its vapour pressure, the 

liquid starts boiling and the vapour bubbles are formed 

 These vapour bubbles are carried along with the flowing liquid to higher 

pressure zones, where these vapour condense and the bubbles collapse 

 Due to sudden collapsing of the bubbles on the metallic surface, high 

pressure is produced and metallic surfaces are subjected to high local stress 

Cavitation(Cont…) 



 The pressure of the flowing liquid in any part of the hydraulic system should 

not be allowed to fall below its vapour pressure 

 If the flowing liquid is water, then the absolute pressure head should not be 

below 2.5m of water 

 The special materials or coatings such as Aluminum-bronze and stainless 

steel, which are cavitation resistant materials, should be used 

Precaution against Cavitation 



 The metallic surfaces are damaged and cavities are formed on the surfaces 

 Due to sudden collapse of vapour bubbles, considerable noise and vibrations 

are produced 

 The efficiency of a turbine decreases due to cavitation 

 Due to pitting action, the surface of the turbine blades becomes rough and 

the force exerted by the water on the turbine blades decreases 

 Hence, the work done by water or output horse power becomes less and 

efficiency decreases 

Effects of Cavitation 



 Only reaction turbine and centrifugal pumps are subjected to cavitation 

 In reaction turbines the cavitation may occur at the outlet of the runner or at 

the inlet of the draft tube where the pressure is considerably reduced 

 Due to cavitation, the metal of the runner vanes and draft tube is gradually 

eaten away, which results in lowering the efficiency of the turbine 

 In order to determine whether cavitation will occur in any portion of a 

reaction turbine, the critical value of Thoma‟s cavitation factors sigma(𝜎) is 

calculated 

Hydraulic Machines Subjected to 
Cavitation 



𝜎 =
𝐻𝑏 − 𝐻𝑠

𝐻
=
(𝐻𝑎𝑡𝑚 − 𝐻𝑣) − 𝐻𝑠

𝐻
 

 Where 𝐻𝑏 =Barometric pressure head in m of water,  

𝐻𝑎𝑡𝑚 =Atmospheric pressure head in m of water, 

 𝐻𝑣 =Vapour pressure head in m of water, 

H = Net head on the turbine in m 

 

 

Hydraulic Machines Subjected to 
Cavitation(Cont…) 



 When the valve is completely open, the water is flowing with a velocity, V in 

the pipe 

 If now the valve is suddenly closed, the momentum of the flowing water will 

be destroyed and consequently a wave of high pressure will be set up 

 

Water Hammer 

 This wave of high pressure will be 

transmitted along the pipe with a velocity 

equal to the velocity of sound wave and 

may create noise called knocking 



 Also this wave of high pressure has the effect of hammering action on the 

walls of the pipe and hence it is known as water hammer 

 The pressure rise due to water hammer depends up on: 

Velocity of flow of water in pipe, The length of pipe, Time taken to close the 

valve, Elastic properties of the material of the pipe, Gradual closure of valve 

Sudden closure of valve considering pipe in rigid, Sudden closer of valve 

considering pipe elastic 

 

Water Hammer(Cont…) 



 Cavitations may be avoided by installing the turbine at a lower level with 

respect to the tail race 

 At part load the performance of Kaplan and pelton turbines is better in 

comparison to that of Francis and Propeller turbines 

 In cavitation, formation of vapour bubbles of a flowing liquid in a region, 

where the pressure of the liquid falls below its vapour pressure and the 

sudden collapsing of these vapour bubbles in a region of higher pressure 

 Only reaction turbine and centrifugal pumps are subjected to cavitation 

Summary 


