
Presented By:

D. PHANI KUMAR
Assistant Professor
Department of CSE
GIET-[A]

Lecture Details:

Subject : Design and Analysis of Algorithms
Topic : Introduction
Branch/Year : CSE, III-B.Tech I-Semester

UNIT-I

TOPIC-1: INTRODUCTION

DESIGN and ANALYSIS ofALGORITHMS

UNIT-1 TOPIC DESCRIPTION

Introduction TOPIC-1

 Algorithm & Pseudo code

 Performance Analysis

 Asymptotic Notations

Course Outcome

Student able to:

 Relate various algorithm design situations

 Identify Space complexity, Time complexity (Performance Analysis)

 Categorize Asymptotic notations.

Prerequisite(s)

Basic knowledge on:

 Algorithm Design

 Programming Language concepts

Introduction

 Design Algorithm refers to a method or a mathematical process for

problem-solving and engineering algorithms.

The design of algorithms is part of many solution theories of

operation research, such as dynamic programming and divide-and-

conquer.

 Design Analysis is essentially a decision-making process in which

analytical tools derived from basic sciences, mathematics, statistics,

and engineering fundamentals are utilized for the purpose of

developing a product model that is convertible into an actual

product.

Text/Reference Books

 Introduction to Algorithms, second edition,

T.H. Cormen, C.E.Leiserson, R.L.Rivest and C.Stein, PHI Pvt. Ltd

 Fundamentals of Computer Algorithms,

Ellis Horowitz, Satraj Sahni and Rajasekharam, Universities Press.

 Design and Analysis of algorithms,

Aho, Ullman and Hopcroft,Pearson education.

Algorithm

 An Algorithm is a finite sequence of well-defined, computer-

implementable instructions, typically to solve a class of problems or

to perform a computation.

 Algorithms are always unambiguous and are used as specifications

for performing calculations, data processing, automated reasoning,

and other tasks.

An Algorithm is a step-by-step procedure,

with a set of operations designed to perform a

specific task.

An Algorithm is a sequence of step to solve a

specific problem.

Algorithm

Characteristics of an algorithm:

 Must take input

 Must give some output

 Definiteness: Each instruction is clear and unambiguous.

 Finiteness: Algorithm terminates after a finite number of steps.

 Effectiveness: Every instruction must be basic i.e. simple instruction.

 Correctness: Correct, Produce an incorrect answer & approximation algorithm

 Less resource: Use less resources (time and space).

Pseudo Code

 Pseudo code is an artificial and informal language that helps

programmers develop algorithms. Pseudo code is a "text-based"

detail (algorithmic) design tool.

 The rules of Pseudo code are reasonably straightforward. These

include while, do, for, if, switch. Examples below will illustrate this

notion.

Pseudo code simply an implementation of an

algorithm in the form of annotations and

informative text written in plain English.

Pseudo Code

Advantages of Pseudo code:

 Improves the readability of any approach. It’s one of the best

approaches to start implementation of an algorithm.

 Acts as a bridge between the program and the algorithm or

flowchart. Also works as a rough documentation, so the program of

one developer can be understood easily when a pseudo code is

written out.

 The main goal of a pseudo code is to explain what exactly each line

of a program should do, hence making the code construction phase

easier for the programmer.

Algorithm

Algorithm to check whether the given number is even or odd:

START

Step 1 → Take integer variable A

Step 2 → Assign value to the variable

Step 3 → Perform A modulo 2 and check result if output is 0

Step 4 → If true print A is even

Step 5 → If false print A is odd

STOP

Pseudo Code

Pseudo code to check whether the given number is even or odd:

1. START

2. DISPLAY "Enter the Number - "

3. READ number

4. IF number MOD 2 = 0 THEN

DISPLAY "Number is Even"

ELSE

DISPLAY "Number is Odd"

END IF

5. STOP

DoIt::

Chat box:

In simple terms differentiate the Algorithm and Pseudo code

Performance Analysis

Time complexity: The amount of time required to run an algorithm in

terms of the size of the input.

"Time" can mean

 the number of memory accesses performed,

 the number of comparisons between integers,

 the number of times some inner loop is executed, or

 some other natural unit related to the amount of real time the

algorithm will take.

Performance Analysis

Space complexity: The amount of space or memory taken by an

algorithm to run as a function of the length of the input.

The actual running time depends on a variety of backgrounds:

 the speed of the Computer,

 the language in which the algorithm is implemented,

 the compiler/interpreter,

 skill of the programmers etc.

Performance Analysis

 Suppose given an array and an integer and have to find

if exists in array .

 Simple solution to this problem is traverse the whole array and check

if the any element is equal to .

for i : 1 to length of A

if A[i] is equal to key

return TRUE

return FALSE

 Each of the operation in computer take approximately constant time ().

The number of lines of code executed

is actually depends on the value of .

Performance Analysis

 In the worst case, the if condition will run times where is the

length of the array .

 Total execution time will be

for the if condition and

for the return statement

 The total time depends on the length of the array .

 If the length of the array will increase the time of execution will also

increase.

Performance Analysis

 Order of growth is how the time of execution depends on the length

of the input.

 In the previous example, the time of execution is linearly depends on

the length of the array.

 Order of growth will help to compute the running time with ease.

 Different notation are there to describe limiting behavior of a function.

Performance Analysis

Space:

S(P) = c+ Sp(Instance characteristics)

Where, c is constant.

Example:

Algorithm abc(a,b,c)

{

return a+b++*c+(a+b-c)/(a+b) +4.0;

}

In this algorithm sp=0;

Let assume each variable occupies one word, then the space occupied by

above algorithm is >=3.

S(P)>=3

Performance Analysis

Example:

Algorithm sum(a,n)

{

s=0.0;

for i=1 to n do

s= s+a[i];

return s;

}

In the above algorithm n, s occupies one word each and array “a”

occupies n number of words and i occupies n+1 number of words so

S(P)>=2n+3

Performance Analysis

Example:

Algorithm RSum (a, n)

{

if(n<=0) then return 0.0;

else

return RSum(a,n-1)+a[n];

}

In the above recursion algorithm, the space need for the values of n,

return address and pointer to array. The above recursive algorithm

depth is (n+1). To each recursive call we require space for values of n,

return address and pointer to array. So the total space occupied by the

above algorithm is S(P) >= 3(n+1)

Performance Analysis

sum(a,n)

{

s= 0.0;

for i=1 to n do

{

s=s+a[i];

}

return s;

}

Each time a statement in the program is executes,

count is incremented by the step of that statement

// count = count+1;

// count = count+1;

// count = count+1;

// count = count+1;

n+1 time’s

n time’s

total of 2n+3 steps

Performance Analysis

Statement Steps per execution Frequency Total Steps

sum(a,n) 0 - 0

{ 0 - 0

s= 0.0; 1 1 1

for i=1 to n do 1 n+1 n+1

{ 0 - 0

s=s+a[i]; 1 n n

} 0 - 0

return s; 1 1 1

} 0 - 0

2n+3

Performance Analysis

 In above example, if we analyze carefully frequency of

"for count = 1 to n do"

it is ‘n+1' this is because the statement will be executed one time

more die to condition.

 Once the total steps are calculated they will resemble the instance

characteristics in time complexity of algorithm.

 The repeated compile time of an algorithm will also be constant every

time. we compile the same set of instructions so we can consider this

time as constant 'C'.

 Therefore the time complexity can be expressed as:

Time(Sum) = C + (2n +3)

Asymptotic Analysis

 Asymptotic analysis of an algorithm refers to defining the

mathematical boundation/framing of its run-time performance.

 Using asymptotic analysis, we can very well conclude the

 Best case: Minimum time required for program execution

 Average case: Average time required for program execution

 Worst case: Maximum time required for program execution

 Amortized: A sequence of operations applied to the input of

size a averaged over time

Asymptotic Notations

The commonly used asymptotic notations to calculate the running time

complexity of an algorithm.

 Ο Notation (Big O Notation)

 Ω Notation (Omega Notation)

 θ Notation (Theta Notation)

 o Notation (Little o Notation)

Ο Notation (Big O Notation)

‘O’ (Big Oh) is the most commonly used

notation. It is used to find the upper bound time

of an algorithm , that means the maximum time

taken by the algorithm.

Definition : Let f(n), g(n) are two non-negative

functions. If there exists two positive constants

c ,n0 . such that c>0 and for all n>=n0 if

𝒇(𝒏) ≤𝒄.𝒈(𝒏)

then we say that

f(n)=O(g(n))

Hence, function 𝒈(𝒏) is an upper bound for

function 𝒇(𝒏), as 𝒈(𝒏) grows faster than 𝒇(𝒏).

Ο Notation (Big O Notation)

Example:

Let us consider a given function, 𝒇(𝒏)=𝟒.𝒏𝟑+𝟏𝟎.𝒏𝟐+𝟓.𝒏+𝟏.

Considering 𝒈(𝒏)= 𝒏𝟑,

𝒇(𝒏)≤𝟓.𝒈(𝒏) for all the values of 𝒏>𝟐.

Hence, the complexity of 𝒇(𝒏) can be represented as 𝑶(𝒈(𝒏)), i.e. 𝑶(𝒏𝟑).

Ω Notation (Omega Notation)

It is denoted by 'Ω‘ (Omega), used to find the

lower bound time of an algorithm, that means

the minimum time taken by an algorithm.

Definition : Let f(n), g(n) are two non-negative

functions. If there exists two positive constants

c, n0. such that c>0 and for all n>=n0, if

f(n)>=c*g(n)

then we say that

f(n)=Ω(g(n))

Ω Notation (Omega Notation)

Example:

Let us consider a given function, 𝒇(𝒏)=𝟒.𝒏𝟑+𝟏𝟎.𝒏𝟐+𝟓.𝒏+𝟏.

Considering 𝒈(𝒏)= 𝒏𝟑, 𝒇(𝒏)≥𝟒.𝒈(𝒏) for all the values of 𝒏>𝟎.

Hence, the complexity of 𝒇(𝒏) can be represented as 𝛀(𝒈(𝒏)), i.e. 𝛀(𝒏𝟑).

θ Notation (Theta Notation)

It is denoted by ‘Θ’ (Theta), used to find the time

in-between lower bound time and upper bound

time of an algorithm.

Definition : Let f(n), g(n) are two non-negative

functions. If there exists positive constants c1, c2

and n0. such that c1>0,c2>0 and for all n>=n0, if

c1*g(n)<=f(n)<=c2*g(n)

then we say that

f(n)=Θ(g(n))

θ Notation (Theta Notation)

Example

Let us consider a given function, 𝒇(𝒏)=𝟒.𝒏𝟑+𝟏𝟎.𝒏𝟐+𝟓.𝒏+𝟏.

Considering 𝒈(𝒏)= 𝒏𝟑, 𝟒.𝒈(𝒏)≤𝒇(𝒏)≤𝟓.𝒈(𝒏) for all the large values of n.

Hence, the complexity of 𝒇(𝒏) can be represented as Ɵ(𝐠(𝒏)), i.e. Ɵ(𝒏𝟑).

o Notation (Little o Notation)

We formally define 𝒐(𝒈(𝒏)) as the set 𝒇(𝒏)=𝒐(𝒈(𝒏)) for any positive

constant 𝒄>𝟎 and there exists a value 𝒏𝟎>𝟎, such that 𝟎 ≤𝒇(𝒏)≤𝒄.𝒈(𝒏).

Intuitively, in the o-notation, the function 𝒇(𝒏) becomes insignificant

relative to 𝒈(𝒏) as n approaches infinity; that is,

o Notation (Little o Notation)

Example

Let us consider the same function, 𝒇(𝒏)=𝟒.𝒏𝟑+𝟏𝟎.𝒏𝟐+𝟓.𝒏+𝟏.

Considering 𝒈(𝒏)=𝒏𝟒,

Hence, the complexity of 𝒇(𝒏) can be represented as 𝒐(𝒈(𝒏)), i.e. 𝒐(𝒏𝟒).

⍵ Notation (Little-Omega Notation)

We use ω-notation to denote a lower bound that is not asymptotically

tight. Formally, however, we define ⍵(𝒈(𝒏)) as the set 𝒇(𝒏)=⍵(𝒈(𝒏)) for

any positive constant 𝒄>𝟎 and there exists a value 𝒏𝟎>𝟎, such that

𝟎≤𝒄.𝒈(𝒏)<𝒇(𝒏).

For example, 𝒏𝟐/2=⍵(𝒏), but 𝒏𝟐/2≠⍵(𝒏𝟐). The relation 𝒇(𝒏)= ⍵(𝒈(𝒏))

implies that the following limit exists

ie., 𝒇(𝒏) becomes arbitrarily large relative to 𝒈(𝒏) as n approaches infinity.

⍵ Notation (Little-Omega Notation)

Example

Let us consider same function, 𝒇(𝒏)=𝟒.𝒏𝟑+𝟏𝟎.𝒏𝟐+𝟓.𝒏+𝟏.

Considering 𝒈(𝒏)= 𝒏𝟐,

Hence, the complexity of 𝒇(𝒏) can be represented as 𝒐(𝒈(𝒏)), i.e. ⍵(𝒏𝟐).

Amortized Analysis

Amortized analysis is generally used for certain algorithms where a

sequence of similar operations are performed.

 Amortized analysis provides a bound on the actual cost of the entire

sequence, instead of bounding the cost of sequence of operations

separately.

 Amortized analysis differs from average-case analysis; probability is

not involved in amortized analysis. Amortized analysis guarantees

the average performance of each operation in the worst case.

Amortized Analysis

Aggregate Method

The aggregate method gives a global view of a problem. In this method,

if n operations takes worst-case time 𝑻(𝒏) in total. Then the amortized

cost of each operation is 𝑻(𝒏)/𝒏. Though different operations may take

different time, in this method varying cost is neglected.

Amortized Analysis

Accounting Method

In this method, different charges are assigned to different operations

according to their actual cost. If the amortized cost of an operation

exceeds its actual cost, the difference is assigned to the object as credit.

This credit helps to pay for later operations for which the amortized cost

less than actual cost.

If the actual cost and the amortized cost of ith operation are 𝒄𝒊 and 𝒄 ̂,

then

p(n)-p (0) =

p(n)-p (0) ≥0

Amortized Analysis

Potential Method

This method represents the prepaid work as potential energy, instead of

considering prepaid work as credit. This energy can be released to pay for

future operations.

If we perform 𝒏 operations starting with an initial data structure 𝑫𝟎. Let

us consider, 𝒄𝒊 as the actual cost and 𝑫𝑖 as data structure of ith operation.

The potential function ф maps to a real number ф(𝑫𝒊), the associated

potential of 𝑫𝒊. The amortized cost 𝒄 ̂ can be defined by

𝒄 ̂= 𝒄𝒊+ ф(𝑫𝒊)−ф(𝑫𝒊−𝟏)

Hence, the total amortized cost is

Amortized Analysis

The aggregate method, where the total running time for a sequence of

operations is analyzed.

The accounting (or banker's) method, where we impose an extra charge

on inexpensive operations and use it to pay for expensive operations later

on.

The potential (or physicist's) method, in which we derive a potential

function characterizing the amount of extra work we can do in each step.

This potential either increases or decreases with each successive operation,

but cannot be negative.

Probabilistic Analysis

Probabilistic analysis, analyze the algorithm for finding efficiency. The

efficiency of algorithm is also depend upon distribution of inputs. This can

be done by analyzing algorithm by the concept of probability.

Example: A company wants to recruiting k persons from the n persons. To

do this the company assigns ranking to all n persons depend upon their

performance. The rankings of n persons from r1 to rn. To n persons we get

n! permutations out of n! permutations the company selects any one

combination that is from r1 to rk.

1. Define an algorithm. What are the different criteria that satisfy the algorithm

and Explain different techniques to represent an algorithm?

2. Define the terms “Time complexity" and “Space complexity" of algorithms.

3. Write an algorithm to find the 1 to n prime numbers. Determine the

frequency counts for all the statements in the algorithm.

Assignment-I

Note:

1. Complete the Assignment-I (Hand Written).

2. Scan the work, convert into pdf and upload.

3. Assignment Posted date 31-Sept-2020

4. Last date of submission 02-Sept-2020.

PresentedBy:

D. PHANIKUMAR
Assistant Professor
Department of CSE
GIET-[A]

Lecture Details:

Subject : Design and Analysis of Algorithms
Topic : GREEDY METHOD
Branch/Year:CSE, III-B.Tech I-Semester

UNIT-II

TOPIC: GREEDYMETHOD

DESIGNandANALYSISofALGORITHMS

UNIT-2 TOPIC DESCRIPTION

Greedy Method
Greedy Method

Applications

 Greedy Method

 General Method

 Applications

 Job Sequencing with Deadlines

 Knapsack Problem

 Spanning Tree

 Minimum Cost Spanning Tree

 Single Source Shortest Path Problem

Outcome

Student ableto:

 Categorize the Greedy Method with variousAlgorithms

 Identify and solve the major graph algorithms problems with their analyses

 Relate various algorithm design situations

Greedy Method

The simplest and straightforward approach is the Greedy method. In

this approach, the decision is taken on the basis of current available

information without worrying about the effect of the current decision in

future.

 Greedy algorithms build a solution part by part, choosing the next part

in such a way, that it gives an immediate benefit.

 This approach never reconsiders the choices taken previously.

 This approach is mainly used to solve optimization problems.

 In many problems, it does not produce an optimal solution though it

gives an approximate (near optimal) solution in a reasonable time.

Greedy Method

Components of GreedyAlgorithm:

Candidate Set:Asolution is created from this set.

Selection Function: Used to choose the best candidate to be added to the

solution.

Feasibility Function: Used to determine whether a candidate can be used

to contribute to the solution.

Objective Function: Used to assign a value to a solution or a partial

solution.

Solution Function: Used to indicate whether a complete solution has

been reached.

Job Sequencing with Deadlines

The objective is to find a sequence of jobs, which is completedwithin

their deadlines and gives maximum profit.

 Consider set of jobs.

 Each job has a defined deadline and some profit associated with it.

 The profit of a job is given only when that job is completed within

its deadline.

 Only one processor is available for processing all the jobs.

 Processor takes one unit of time to complete a job.

Job Sequencing with Deadlines

Greedy Algorithm is adopted to determine how the next job is selected

for an optimal solution.

Step-1:

 Sort all the given jobs in decreasing order of their profit.

Step-2:

 Check the value of maximum deadline.

 Draw a Gantt chart where maximum time on Gantt chart is the

value of maximum deadline.

Step-3:

 Pick up the jobs one by one.

 Put the job on Gantt chart as far as possible from 0 ensuring that

the job gets completed before its deadline.

Job Sequencing with Deadlines

Jobs J1 J2 J3 J4 J5 J6

Deadlines 5 3 3 2 4 2

Profits 200 180 190 300 120 100

Step-1: Sort all the given jobs in decreasing order of their profit

Jobs J4 J1 J3 J2 J5 J6

Deadlines 2 5 3 3 4 2

Profits 300 200 190 180 120 100

Job Sequencing with Deadlines

Step-2:

 Value of maximum deadline = 5.

 So, draw a Gantt chart with maximum time on Gantt chart = 5 units

as shown

0 1 2 3 4 5

Gantt chart

Job Sequencing with Deadlines

J2 J4 J3 J5 J1

0 1 2 3 4 5

Gantt chart

Jobs J1 J2 J3 J4 J5 J6

Deadlines 5 3 3 2 4 2

Profits 200 180 190 300 120 100

Jobs J4 J1 J3 J2 J5 J6

Deadlines 2 5 3 3 4 2

Profits 300 200 190 180 120 100

Find the Job Sequence for the following 2 examples

0 1 2 3

Job J1 J2 J3 J4 J5

Deadline 2 1 3 2 1

Profit 60 100 20 40 20

Job J1 J2 J3 J4 J5

Deadline 2 1 2 1 3

Profit 100 19 27 25 15

0 1 2 3

Knapsack Problem

KnapsackProblem

Given a set of items, each with a weight and a value, determine a

subset of items to include in a collection so that the total weight is less

than or equal to a given limit and the total value is as large as

possible.

Based on the nature of the items, Knapsack problems are categorized as

 Fractional Knapsack

 Knapsack (0/1 Knapsack)

Knapsack Problem

Knapsack is basically means bag. A bag of given capacity.

We want to pack n items in your luggage.

 The ith item is worth vi dollars and weight wi pounds.

 Take as valuable a load as possible, but cannot exceed W pounds.

 vi wi W are integers.

W ≤ capacity

Value ← Max

Knapsack Problem

Input:

 Knapsack of capacity

 List (Array) of weight and their corresponding value.

Output:

 To maximize profit and minimize weight in capacity.

Fractional Knapsack

In this case, items can be broken into smaller pieces, hence fractions of

items can select. According to the problem statement,

There are n items in the store

Weight of ith itemwi>0

Profit for ith item pi>0and

Capacity of the Knapsack is W

Items can be broken into smaller pieces, So that only fraction xi of ith item

may take.

0 ≤ xi ≤ 1

The ith item contributes the weight xi.wi to the total weight in the knapsack

and profit xi.pi to the total profit.

Fractional Knapsack

The objective of this algorithm is to

subject toconstraint

It is clear that an optimal solution must fill the knapsack exactly,

otherwise we could add a fraction of one of the remaining items and

increase the overall profit.

Thus, an optimal solution can be obtained by

Fractional Knapsack

Algorithm: Greedy-Fractional-Knapsack (w[1..n],p[1..n], W)

for i = 1 to n do

x[i] = 0
weight =0

for i = 1to n

if weight + w[i] ≤ W then

x[i] = 1

weight = weight + w[i]

else

x[i] = (W - weight) / w[i]

weight =W

break

return x

Fractional Knapsack

Analysis

If the provided items are already sorted into a decreasing order of pi/wi,

then the loop takes a time in O(n);

Therefore, the total time including the sort is in O(n logn).

Fractional Knapsack

Consider that the capacity of the knapsack W = 60

Item A B C D

Profit 280 100 120 120

Weight 40 10 20 24

Pi/wi 7 10 6 5

Item B A C D

Profit 100 280 120 120

Weight 10 40 20 24

Pi/wi 10 7 6 5

Fractional Knapsack

After sorting all the items according to pi/wi. First all of B is chosen as

weight of B is less than the capacity of the knapsack. Next, item A is

chosen, as the available capacity of the knapsack is greater than the

weight of A. Now, C is chosen as the next item. However, the whole item

cannot be chosen as the remaining capacity of the knapsack is less than

the weight of C.

Hence, fraction of C (i.e. (60 − 50)/20) is chosen.

Now, the capacity of the Knapsack is equal to the selected items.

Hence, no more item can be selected.

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440

Fractional Knapsack

Consider that the capacity of the knapsack W = 60

Item A B C D E

Profit 30 40 45 77 90

Weight 5 10 15 22 25

Pi/wi 6 4 3 3.5 3.6

Fractional Knapsack

Consider that the capacity of the knapsack W = 60

Item A B C D E

Profit 30 40 45 77 90

Weight 5 10 15 22 25

Pi/wi 6 4 3 3.5 3.6

Item A B E D C

Profit 30 40 90 77 45

Weight 5 10 25 22 15

Pi/wi 6 4 3.6 3.5 3

Spanning Tree

A Spanning Tree is a subset of an undirected Graph that has all the

vertices connected by minimum number of edges.

If all the vertices are connected in a graph, then there exists at least one

spanning tree. In a graph, there may exist more than one spanning tree.

Properties:

Aspanning tree does not have any cycle.

Any vertex can be reached from any other vertex.

Minimum Spanning Tree

A Minimum Spanning Tree (MST) is a subset of edges of a connected

weighted undirected graph that connects all the vertices together with the

minimum possible total edge weight.

Minimum Spanning Tree make use of Prim’s algorithm or Kruskal’s

algorithm.

A graph may have more than one spanning tree. If there are n number of

vertices, the spanning tree should have n-1 number of edges.

Each edge of the graph is associated with a weight and there exists more

than one spanning tree, we need to find the minimum spanning tree of

the graph.

Moreover, if there exist any duplicate weighted edges, the graph may

have multiple minimum spanning tree.

Minimum Spanning Tree

In the graph, thick edges shown a spanning tree though it’s not the

minimum spanningtree.

The cost of this spanning tree is (5 + 7 + 3 + 3 + 5 + 8 + 3 + 4) = 38.

Minimum Spanning Tree

Kruskal’s algorithm

Minimum Spanning Tree

Prim’s algorithm to find the minimum spanning tree

Randomly start from any vertex, let us start from

vertex 1.

Vertex3 is connected to vertex 1 with minimum edge

cost, hence edge (1, 2) is added to the spanning tree.

Next, edge (2, 3) is considered as this is the minimum

among edges {(1, 2), (2, 3), (3, 4), (3, 7)}.

Minimum Spanning Tree

In the next step, we get edge (3,4) and (2,4) with

minimum cost. Edge (3,4) is selected at random.

In a similar way, edges (4,5), (5,7), (7,8), (6,8) and

(6,9) are selected. As all the vertices are visited,

now the algorithm stops.

The cost of the spanning tree is

(2 + 2 + 3 + 2 + 5 + 2 + 3 + 4) = 23.

There is no more spanning tree in this graph with

cost less than23.

Minimum Spanning Tree

Time Complexity:

Kruskal’s algorithm, most time consuming operation is sorting

because the total complexity of the Disjoint-Set operations will

be O(ElogV), which is the overall Time Complexity of the algorithm.

Prim’s Algorithm, the time complexity will be O((V+E)logV) because

each vertex is inserted in the priority queue only once and insertion in

priority queue take logarithmic time.

Minimum Spanning Tree

Find the

Minimum Spanning Tree ?

Single Source Shortest Path Problem

Definition

The shortest path problem can be a path requires that consecutive

vertices be connected by an appropriate directed edge.

It defined for graphs whether undirected, directed,or mixed.

Two vertices are adjacent when they are both incident to a common edge.

Apath in an undirected graph is a sequence of vertices

P=(v1,v2,…,vn) €V*V*……*V

Such that vi is adjacent to vi+1 for 1 ≤ i <n.

Such a path P is called a path of length n-1 from vi to vn.

Single Source Shortest Path Problem

Relaxation

if (d[u] + c(u,v) < d[v])

d[v]= d[u] + c(u,v)

Single Source Shortest Path Problem

Dijkstra’sAlgorithm

 An algorithm for finding the shortest paths between nodes in a graph.

 The algorithm finds the shortest path between that node and every

other node.

 It can also be used for finding the shortest paths from a single node to a

single destination node by stopping the algorithm once the shortest

path to the destination node has been determined

Dijkstra’sAlgorithm

 Dijkstra Algorithm is based on the principle of Relaxation, in which an

approximation for the correct distance is gradually replaced by more

accurate values until shortest distance is reached.

 The approximate distance to each vertex is always an overestimate of

the true distance, and it is replaced by the minimum of its old value

with the length of newly found path.

 It uses a priority queue to greedily select the closest vertex that has not

yet been processed and performs this relaxation process on all of its out

going edges.

Single Source Shortest Path Problem

Single Source Shortest Path Problem using Dijkstra’s Algorithm

Vertex
Distancefrom

Source

0 0

1 4

2 12

3 19

4 21

5 11

6 9

7 8

8 14

Single Source Shortest Path Problem

Single Source Shortest Path Problem

Find the

Single Source Shortest Path Problem ?

Design and Analysis of Algorithms

Assignment-II.1

1. Write a greedy algorithm to the Job sequencing with deadlines. Find the optimal solution

using greedy Algorithm for given problem. Let n=5, (p1, p2, p3, p4, p5)=(40,33,30,14,10)

and (d1, d2, d3, d4, d5)=(2, 1, 2, 3, 3). Find the optimal solution using greedy Algorithm.

2. What is knapsack problem? State knapsack problem formally. Obtain the solution to

knapsack problem where n=6, (p1, p2, p3, p4, p5, p6) = (100, 50, 60, 20, 70, 30), (w1, w2,

w3, w4, w5, w6) = (20,10,15,5,25,10) andm=60.

3. Define spanning tree. Compute a minimum cost spanning tree for the graph of figure using

Kruskal’s algorithm.

Note:
1. Completethe Assignment-II.1 (Hand Written).
2. Scan the work, convert into pdf and upload.
3. Assignment Posteddate 01-Oct-2020
4. Last date of submission 03-Oct-2020.

Design and Analysis of Algorithms

Assignment-II.2

1. Computea minimum cost spanning tree for the graph of figure using Prims’s algorithm.

2. What is Single Source Shortest Path Problem. Find the shortest path for the given directed

graph

Note:
1. Completethe Assignment-II.2 (Hand Written).
2. Scan the work, convert into pdf and upload.
3. Assignment Posteddate 01-Oct-2020
4. Last date of submission 05-Oct-2020.

Presented By:

D. PHANI KUMAR
Assistant Professor
Department of CSE
GIET-[A]

Lecture Details:

Subject : Design and Analysis of Algorithms
Topic : DIVIDE AND CONQUER
Branch/Year : CSE, III-B.Tech I-Semester

UNIT-I

TOPIC-2: DIVIDE AND CONQUER

DESIGN and ANALYSIS ofALGORITHMS

UNIT-1 TOPIC DESCRIPTION

Divide and Conquer TOPIC-2

 Divide and Conquer

 Applications of Divide and Conquer

 Binary Search

 Quick Sort

 Merge Sort

Divide and Conquer

Divide and Conquer:

This technique can be divided into the following three parts:

Divide: This involves dividing the problem into some sub problem.

Conquer: Sub problem by calling recursively until sub problem solved.

Combine: The Sub problem Solved so that we will get find problem solution.

Applications

Binary Search is a searching algorithm. In each step, the algorithm

compares the input element x with the value of the middle element in

array. If the values match, return the index of the middle. Otherwise, if x
is less than the middle element, then the algorithm recurs for left side of

middle element, else recurs for the right side of the middle element.

Quick Sort is a sorting algorithm. The algorithm picks a pivot element,

rearranges the array elements in such a way that all elements smaller than

the picked pivot element move to left side of pivot, and all greater

elements move to right side. Finally, the algorithm recursively sorts the

subarrays on left and right of pivot element.

Merge Sort is also a sorting algorithm. The algorithm divides the array in

two halves, recursively sorts them and finally merges the two sorted

halves.

Divide and Conquer Algorithm

DAC(a, i, j)

{

if(small(a, i, j))

return(Solution(a, i, j))

else m = divide(a, i, j) // f1(n)

b = DAC(a, i, mid) // T(n/2)

c = DAC(a, mid+1, j) // T(n/2)

d = combine(b, c) // f2(n)

return(d)

}

Recurrence Relation

O(1) if n is small

T(n) = f1(n) + 2T(n/2) + f2(n)

Binary Search

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Elements

Index

Low HighIndex Positions

Binary Search

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low High

Key=43 (Searching Element)

Mid = (Low + High) / 2

= (1 + 15) / 2

= 8

Mid

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary Search

Here Key > Mid

 Right half partition is going to search

 Low = Mid + 1

Low HighMid

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

High

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low

Binary Search

Again Key < Mid

 Right half partition is going to search

 High = Mid - 1

Mid HighLow

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

High

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low

Binary Search

Again Key > Mid

 Right half partition is going to search

 Low = Mid + 1

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 6 9 11 15 17 24 28 32 36 43 48 51 56 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low HighMid

Binary Search

low :=1 ; high :=n ;

while (low < high) do

{

mid :=|(low + high)/2|

if (x < a [mid]) then

high:=mid – 1;

else if (x > a [mid]) then

low:= mid + 1

else

return mid;

}

return 0;

un-successful searches
O(log n)

best, average and worst

Successful searches
O(1), O(log n), O(log n)
Best average worst

Merge Sort

 Merge sort algorithm is a classic example of divide and conquer.

 To sort an array, recursively, sort its left and right halves separately

and then merge them.

 The time complexity of merge mort in the best case, worst case and

average case is O(n log n) and the number of comparisons used is

nearly optimal.

Merge Sort

MergeSort (a[], l, r)

if r > l

1. Find the middle point to divide the array into two halves:

middle m = (l + r) / 2

2. Call mergeSort for first half:

Call mergeSort (a, l, m)

3. Call mergeSort for second half:

Call mergeSort (a, m + 1, r)

4. Merge the two halves sorted in step 2 and 3:

Call merge (a, l, m, r)

Merge Sort

 Divide the unsorted list into n sublists, each comprising 1 element.

15 7 4 12 9 11 6 2
0 1 2 3 4 5 6 7

15 7 4 12
0 1 2 3

9 11 6 2
4 5 6 7

15 7
0 1

4 12
2 3

9 11
4 5

6 2
6 7

15
0

7
1

4
2

12
3

9
4

11
5

6
6

2
7

Merge Sort

 Repeatedly merge sublists to produce newly sorted sublists until

there is only 1 sublist remaining.

15
0

7
1

4
2

12
3

9
4

11
5

6
6

2
7

7 15
0 1

4 12
2 3

9 11
4 5

2 6
6 7

4 7 12 15
0 1 2 3

2 6 9 11
4 5 6 7

2 4 6 7 9 11 12 15
0 1 2 3 4 5 6 7

Quick Sort

Pick an element as pivot and partitions the given array around the

picked pivot. There are different ways to pick pivot.

 Always pick first element as pivot.

 Always pick last element as pivot (implemented below)

 Pick a random element as pivot.

 Pick median as pivot.

Quick Sort

7 2 1 6 8 5 3 4
0 1 2 3 4 5 6 7

2 1 3 4 8 5 7 6
0 1 2 3 4 5 6 7

2 1 3
0 1 2

8 5 7 6
4 5 6 7

1 2
0 1

5 6 7 8
4 5 6 7

5
4

7 8
6 7

Quick Sort

quickSort(arr[], low, high)

{

if (low < high)

{

/* pi is partitioning index, arr[pi] is now at right place */

pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi

quickSort(arr, pi + 1, high); // After pi

}

}

Quick Sort

partition (arr[], low, high)

{

pivot = arr[high];

i = (low - 1) // Index of smaller element

for (j = low; j <= high- 1; j++)

{

if (arr[j] < pivot) // If current element is smaller than the pivot

{

i++; // increment index of smaller element

swap (arr[i], arr[j])

}

}

swap (arr[i + 1], arr[high])

return (i + 1)

}

Quick Sort

Quick Sort

arr[] = {10, 80, 30, 90, 40, 50, 70}

Indexes: 0 1 2 3 4 5 6

low = 0, high = 6, pivot = arr[h] = 70

Initialize index of smaller element, i = -1

Traverse elements from j = low to high-1

j = 0 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])

i = 0 arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i and j, as are same

j = 1 : Since arr[j] > pivot, do nothing

// No change in i and arr[]

j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])

i = 1

arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30

Quick Sort

j = 3 : Since arr[j] > pivot, do nothing // No change in i and arr[]

j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])

i = 2

arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped

j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j]

i = 3

arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped

We come out of loop because j is now equal to high-1.

Finally we place pivot at correct position by swapping

arr[i+1] and arr[high] (or pivot)

arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70 Swapped

Quick Sort

Worst Case: The worst case occurs when the partition process always

picks greatest or smallest element as pivot. If we consider above partition

strategy where last element is always picked as pivot, the worst case

would occur when the array is already sorted in increasing or decreasing

order.

Following is recurrence for worst case.

T(n) = T(0) + T(n-1) + O(n)

which is equivalent to T(n) = T(n-1) + O(n)

The solution of above recurrence is O(n2).

Quick Sort

Best Case: The best case occurs when the partition process always picks

the middle element as pivot.

Following is recurrence for best case.

T(n) = 2T(n/2) + (n)

The solution of above recurrence is O(nlog(n)).

Average Case: Consider all possible permutation of array and calculate

time taken by every permutation which doesn’t look easy.

We can get an idea of average case by considering the case when partition

puts O(n/9) elements in one set and O(9n/10) elements in other set.

Following is recurrence for this case.

T(n) = T(n/9) + T(9n/10) + (n)

Solution of above recurrence is also O(nlog(n))

Presented By:

D. PHANI KUMAR
Assistant Professor
Department of CSE
GIET-[A]

Lecture Details:

Subject : Design and Analysis of Algorithms
Topic : BACKTRACKING
Branch/Year : CSE, II-B.Tech II-Semester

UNIT-IV

TOPIC: BACKTRACKING

DESIGN and ANALYSIS ofALGORITHMS

UNIT-4 TOPIC DESCRIPTION

BACKTRACKING
 General Method

 Applications

 Backtracking

 General Method

 Applications

 n-Queen problem

 Sum of Subsets problem

 Graph Colouring

 Hamiltonian Cycles

Outcome

Student able to:

 Categorize the Backtracking with various Algorithms

 Identify and solve the major graph algorithms problems with their analyses

 Relate various algorithm design situations

Backtracking

Backtracking is a technique based on algorithm to solve

problem. It uses recursive calling to find the solution by building a

solution step by step increasing values with time. It removes the

solutions that doesn't give rise to the solution of the problem based

on the constraints given to solve the problem.

Backtracking is an algorithmic-technique for solving problems recursively by

trying to build a solution incrementally, one piece at a time, removing those

solutions that fail to satisfy the constraints of the problem at any point of time

Backtracking

Backtracking algorithm is applied to some specific types of problems:

 Decision problem used to find a feasible solution of the problem.

 Optimization problem used to find the best solution that can be applied.

 Enumeration problem used to find the set of all feasible solutions of

the problem.

Backtracking

In backtracking problem, the algorithm tries to find a sequence path

to the solution which has some small checkpoints, and the problem can

backtrack if no feasible solution is found for the problem.

Algorithm:

Step 1 : if current_position is goal, return success

Step 2 : else,

Step 3 : if current_position is an end point, return failed.

Step 4 : else, if current_position is not end point, explore and

repeat above steps.

n-Queen Problem

The N Queen is the problem of placing N chess queens on an N×N

chessboard so that no two queens attack each other.

1) Start in the leftmost column

2) If all queens are placed

return true

3) Try all rows in the current column.

Do following for every tried row.

a) If the queen can be placed safely in this row then mark this [row,

column] as part of the solution and recursively check if placing

queen here leads to a solution.

b) If placing queen in [row, column] leads to a solution then return

true.

c) If placing queen doesn't lead to a solution then unmark this [row,

column] (Backtrack) and go to step (a) to try other rows.

4) If all rows have been tried and nothing worked, return false to trigger

backtracking.

n-Queen Problem

Bounding Function:

n-Queen Problem

No Queen is placed in same Row, Column and Diagonal

n-Queen Problem

n-Queen Problem

n-Queen Problem

Subset sum problem is to find subset of elements that are selected from

a given set whose sum adds up to a given number K. We are

considering the set contains non-negative values. It is assumed that the

input set is unique (no duplicates are presented).

sum of subset problem

Input: This algorithm takes a set of numbers, and a sum value.

The Set: {10, 7, 5, 18, 12, 20, 15}

The sum Value: 35

Output: All possible subsets of the given set, where sum of each

element for every subsets is same as the given sum value.

{10, 7, 18} {10, 5, 20} {5, 18, 12} {20, 15}

sum of subset problem

sum of subset problem

sum of subset problem

sum of subset problem

Given an undirected graph and a number m, determine if the graph can

be colored with at most m colors such that no two adjacent vertices of

the graph are colored with the same color. Here coloring of a graph

means the assignment of colors to all vertices.

Graph Colouring

Graph Colouring

Graph Colouring

Graph Colouring

 Hamiltonian Path is an undirected graph where each vertex visits

exactly once.

 A Hamiltonian cycle is a Hamiltonian Path such that there is an edge

(in the graph) from the last vertex to the first vertex.

Hamiltonian Cycle

Determine whether a given graph contains Hamiltonian Cycle or not ?

Hamiltonian Cycle

 Explain the following Algorithms with examples:

1. Sum of Subsets

2. n Queen Problem

3. Graph Coloring

4. Hamiltonian Cycle

Assignment-4

Presented By:

D. PHANI KUMAR
Assistant Professor
Department of CSE
GIET-[A]

Lecture Details:

Subject : Design and Analysis of Algorithms
Topic : BRANCH AND BOUND
Branch/Year : CSE, II-B.Tech II-Semester

UNIT-V

TOPIC: BRANCH AND BOUND

DESIGN and ANALYSIS of ALGORITHMS

UNIT-5 TOPIC DESCRIPTION

BRANCH
AND

BOUND

General Method

 Applications

 Branch and Bound

 General Method

 Applications

 Travelling sales person problem

 0/1 knapsack problem

Outcome

Student able to:

 Categorize the Branch and Bound with various Algorithms

 Identify and solve the major graph algorithms problems with their analyses

 Relate various algorithm design situations

Branch and Bound

Branch and bound is an algorithm design paradigm which is

generally used for solving combinatorial optimization problems.

These problems are typically exponential in terms of time complexity

and may require exploring all possible permutations in worst case.

 The principle consists in partitioning the solution space into disjoint subsets, which

are represented by the nodes of the branching tree. Then, the algorithm explores the

branches of the tree according to a route strategy. To avoid exploring the entire tree,

before creating a new node in the tree, the algorithm evaluates the node by

comparing the value of the best possible solution, which could be found in the

corresponding subtree, with the best current solution. If a better solution cannot

belong to the subtree rooted at the considered node, the subtree is discarded.

 Branch and Bound is a Systematic method for solving the

optimization problem.

 Branch and Bound technique applied when Greedy Method and

Dynamic Programming method may fails.

 Branch and Bound is much slower. Often leads to exponential time

complexities in the worst case.

 Branch and Bound can lead to run reasonably fast on an average

cases when applied carefully.

 Branch and Bound refers to all the state space search method in

which all the children of an e-node are generated before any other

live node can become the e-node.

Branch and Bound

E-node - Expanded node or E node is the node

which is been expanded. As we know a tree can be

expanded using both BFS(Breadth First Search)

and DFS(Depth First Search),all the expanded

nodes are known as E-nodes.

Live-node - A node which has been generated and

all of whose children are not yet been expanded is

called a live-node.

Dead-node - If a node can't be expanded further,

it's known as a dead-node.

Branch and Bound

 The word, Branch and Bound refers to all the state space search

methods in which we generate the children of all the expanded nodes,

before making any live node as an expanded one. In this method, we find

the most promising node and expand it. The term promising

node means, choosing a node that can expand and give us an optimal

solution. We start from the root and expand the tree until unless we

approach an optimal (minimum cost in case of this problem) solution

Branch and Bound

 Searching Techniques used in Branch and Bound

 BFS

 DFS

 Least Count Search

• Lower Bound

• Upper Bound

Branch and Bound

How to get the cost for each node in the state space tree ?

To get further in branch and bound, we need to find the cost at the

nodes at first. The cost is found by using cost matrix reduction, in

accordance with two accompanying steps row reduction & column

reduction.

In general to get the optimal(lower bound in this problem) cost starting

from the node, we reduce each row and column in such a way that

there must be atleast one 0 in each row and column. For doing this, we

just need to reduce the minimum value from each row and column.

Branch and Bound

 Applications

 Travelling sales person problem

 0/1 knapsack problem

Branch and Bound

Travelling sales person problem

Travelling sales person problem

0/1 Knapsack Problem

10 10 12 18

2 4 6 9

Profit

Weight

m=15
n=4

0/1 Knapsack Problem

NP-Completeness

Polynomial Time

Linear Search : n

Binary Search : logn

Insertion Sort : n2

Merge Sort : nlogn

Matrix Chain Multiplication : n3

Exponential Time

0/1 Knapsack : 2n

Travelling Salesman : 2n

Sum of Subsets : 2n

Graph Colouring : 2n

Hamiltonian Cycle : 2n

NP-Completeness

NP-Completeness: Complexity Classes P, NP, NP-hard and NP-

complete, Clique decision problem, Node cover decision problem.

A problem is in the class NPC if it is in NP and is as hard as any

problem in NP. A problem is NP-hard if all problems in NP are

polynomial time reducible to it, even though it may not be in NP itself.

If a polynomial time algorithm exists for any of these problems, all

problems in NP would be polynomial time solvable. These problems

are called NP-complete. The phenomenon of NP-completeness is

important for both theoretical and practical reasons.

NP-Completeness

Definition of NP-Completeness

A language B is NP-complete if it satisfies two conditions

 B is in NP

 Every A in NP is polynomial time reducible to B.

If a language satisfies the second property, but not necessarily the first one,

the language B is known as NP-Hard. Informally, a search

problem B is NP-Hard if there exists some NP-Complete problem A that

Turing reduces to B.

The problem in NP-Hard cannot be solved in polynomial time, until P=NP.

If a problem is proved to be NPC, there is no need to waste time on trying

to find an efficient algorithm for it. Instead, we can focus on design

approximation algorithm.

NP-Completeness

NP-Complete Problems

Following are some NP-Complete problems, for which no polynomial time

algorithm is known.

 Determining whether a graph has a Hamiltonian cycle

 Determining whether a Boolean formula is satisfiable, etc.

Clique Problem

Definition: In Clique, every vertex is directly connected to another

vertex, and the number of vertices in the Clique represents the Size of

Clique.

Clique Cover: Given a graph G and an

integer k, can we find k subsets of

verticesV1, V2...VK, such that

UiVi = V, and that each Vi is a clique of G.

